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Abstract:

Understanding adjustment processes has become central in economics. Empirical analy-
sisis fraught with the problem that the target is usually unobserved. This paper devel-
ops, simulates and applies GMM methods for estimating dynamic adjustment modelsin
a panel data context with partially unobserved targets and endogenous, time-varying
persistence. In this setup, the standard first difference GMM procedure fails. | propose
three estimation strategies. One is based on quasi-differencing, and it leads to two dif-
ferent, but related sets of moment conditions. The second is characterised by a state-
dependent filter, while the third is an adaptation of the GMM level estimator.

Keywords: Dynamic panel data models, economic adjustment

JEL -Classification: C23, C15, D21
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Chapter 3 — Panel estimation of state dependent adjustment
when the target is unobserved

1 Introduction

New Keynesian economics, with its emphasis on real and financial frictions, has intro-
duced a focus on microeconomic adjustment dynamics into the empirical literature.
Adjustment dynamics are essential for understanding aggregate behaviour and its sensi-
tivity towards shocks. Important examples range from price adjustment and its signifi-
cance for the New Keynesian Phillips curve (Woodford 2004), over plant level adjust-
ment and aggregate investment dynamics (Caballero, Engel and Haltiwanger, 1995,
Caballero and Engel 1999, Bayer 2006), to aggregate employment dynamics, building
from microeconomic evidence (Caballero, Engel and Haltiwanger 1997). In these stud-
ies, as in Chapter 2, the adjustment dynamics itself becomes the principal object of
analysis, instead of being treated as an important, but burdensome obstacle to under-

standing equilibrium phenomena.

In a rather general form, economic adjustment can be framed by a "gap equation”, as
formalised by Caballero, Engel and Haltiwanger (1995):

Ayi,t = A(gi,t’xi,t)' Qi where =Yt yi*,t .

Here, subscripts refer to individual i at timet, and g;, isthe gap between the state y,

inherited from the last period and the target yi*'t that would be realised if adjustment

costs were zero for one period of time. The speed of adjustment, written as afunction A

of the gap itself and additional state variables x; , determines the fraction of the gap

that is removed within one period of time. The adjustment function will reflect convex
or non-convex adjustment costs, irreversibility and indivisibilities, financing constraints
or other restrictions, and the uncertainty of expectation formation. With quadratic ad-
justment costs or Calvo-type probabilistic adjustment, A will be a constant.

Estimating the function A is inherently difficult. In general, both y/, and g, will be

not observable. But some measure of the gap is needed for any estimation, and if A

explicitly depends on g,,, this measure will move to the centre stage. In order to ad-
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dress this issue, one may first try to do the utmost to observe the target as exactly as
possible. The meticulous measurement work of Bayer (2004) and the controversy be-
tween Caballero and Engel (2004) and Cooper and Willis (2004) on interpreting the
results of gap equation estimates bear testimony to the problems that may result from

imperfect measures of the gap.

There is a second route. In linear dynamic panel estimation, the problem can success-
fully been addressed by positing an error component structure for the measurement error
and eliminating the individual fixed effect by a suitable transformation, such as first
differencing. See Bond et al. (2003) and Bond and Lombardi (2007) for an error correc-
tion model of capital stock adjustment. The GMM estimator developed by Arellano and
Bond (1991) accounts for the presence of lagged endogenous variables, the endogeneity
of other explanatory variables, and unobserved individual specific effects. Individual
effects (including a possible measurement error in the target) are differenced out. En-
dogenous explanatory variables can be instrumented using lagged dependent variables if
the memory of the error process is limited. Time fixed effects can also be accommo-
dated; the remaining idiosyncratic component of the measurement error needs to be un-

correlated with the instruments.

In the unrestricted, non-linear case, this approach is not feasible, as a host of incidental

parameters will preclude identification. But there may be direct qualitative information

on the level of A( ), e.g. from survey data, ratings or market information services. If

oneiswilling to treat the adjustment process as piecewise linear, distinguishing regimes
of adjustment, then, as will be shown, this information can be harnessed to eliminate the

incidental parameters from the problem completely.

Linear dynamic panel estimation was pioneered by Anderson and Hsiao (1982) and it
was developed and perfected by Holtz-Eakin, Newey and Rosen (1988), Arellano and
Bond (1991), Arellano and Bover (1995) and Blundell and Bond (1998). This paper
shows how these methods can be adapted for the analysis of economic adjustment if the
target is (partially) unobserved and the non-linearity takes the form of discrete regimes.
This is not straightforward, as the unknown and time varying adjustment coefficient
interacts with the equally unknown individual specific measurement error. But the re-
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ward is substantial: the well-known array of procedures and tests can be brought to bear

on the investigation of economic adjustment.

Section 2 of this paper characterises the stochastic process to be estimated. A continu-
ous scalar and a discrete regime vector are evolving jointly, and the adjustment of the
continuous-type variable depends on the regime. It is shown that the standard procedure
for estimating linear dynamic panel models is not applicable. Section 3 proposes two
estimators on the basis of quasi-differencing, one of them with the virtue of great sim-
plicity, the other being more efficient. Both of them are non-linear, which may lead to a
small sample biasif in one of the regimes the adjustment speed is almost zero. Section 4
works out two linear GMM estimators that are immune to this problem. One of them
uses state dependent filtering, the other is a level estimator applied to a modified model
equation. The latter can also cope with contemporaneously correlated regimes. Section
5 tests and compares the proposed routines in a Monte Carlo study.

2 A regime-specific adjustment process

| examine a situation where avariable y,, revertsto some target level y/, characteristic
of individual i. The speed of adjustment depends on the value of r,,. Thisis an L-

dimensional column vector of regime indicator variables, with one element taking a

value of 1, and all others being zero. The equation is

Ay ==(1= ) (Yia = Vi) F &0y (1)
with

o
The target level y;, is unobservable. It follows an equation that contains an individual-
specific latent term:

Vi =X B+u.

The idiosyncratic component x in the adjustment equation may reflect a measurement
error or unobserved explanatory variables. The vector x;, may encompass random

explanatory variables, deterministic time trends and also time dummies. In its absence,

115



the target level is entirely unobservable, but static. The vector e holds the state depend-

ent adjustment coefficients. The adjustment coefficient ¢, varies over time and
individuals, and (1-¢;,_,) is the adjustment speed at date t. If the process is stable, it

would eventually settle in the target in the absence of shocks. We will start by assuming

the error term to be a martingal e difference sequence:

E(&,|Q,)=0. with )

Q :{ri,t—l’ri,t—Z""’Xi,t—l’xi,t—Z’""gi,t—l’gi,t—z, v s ym} .

Accommodeation to the more general assumption E(‘ei " ‘Q”_k) =0, k=1, with

Q ={ri,t—l1ri,t—2’“'1Xi,t—k’xi,t—k—1"'"gi,t—k’gi,t—k—l, < M y0i} ,

is straightforward in every case that will be discussed. Note, however, that this generali-
sation maintains the assumption of predetermined regime indicators. The case of en-

dogenous regime indicators will be treated separately in Subsection 4.3.

Theregime variable r, , is generated by a threshold process:

r(k), =Ind(c., <s§,<¢,). 3

The unobserved state variable s, may, for example, be an autoregressive process or a
moving average process of order g. Generally, there will be a non-zero covariance be-
tween the error term and the regime indicators, cov(e,,,r,, )= 0. If, for example, ¢, is
the error term in a capital accumulation equation and r;, is the regime indicating the

degree of financing constraints, there should be a contemporaneous correlation between
those two.

As we do not observe the target, we have no direct information on the position of the
individual relative to the target. But the panel dimension can help us to identify the ad-
justment process nonetheless, as it alows us to use an error component approach for
modelling the unobserved target. In the adjustment equation, both the individual effect
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and x;, are interacted with a time varying and endogenous variable. Solving for y,

yields:

Yit =% aYiat (1_ ai,t—1) X;,tB + (1_ 0[i,t—1)lui TE&; - (4)

latent

For later purposes it is useful to work out the backward solution to this stochastic differ-

ence equation. For t >1 and agiven starting value vy, , itis:

-

=

Yit =|:yi,0_ﬂlxi,l_zui] O’i,k"‘X;,tB"'ﬂi +AL 5
k=0
with
A, :Z(Si,l _AX;,I+1B)1;[0{i,k+8i,t' (6)

The solution has three components. The first term captures the influence of the initial

deviation. The second term is the target level at timet, x; B+ . The third term, A,

represents the effect of shocks and target variations, past and present. In the long run,

when the influence of the initial conditions has died out, A, is equal to the deviation

from the target.

Anderson and Hsiao (1982) have devised the classic strategy for estimating linear dy-
namic panel equations with fixed effects. Consider afirst-order autoregressive equation:

i =Vt T &,
Obvioudly, the latent fixed effect  is correlated with the explanatory variable. Trans-
forming the equation by taking first differences eliminates the fixed effect:

Ay, =7Ay, , +Ag .
Now the transformed error term Ag,, is correlated with the transformed regressor,

AY, - This can be accommodated using an instrument variable procedure. Anderson

and Hsiao propose using either lagged first differences or lagged levels as instruments.
Employing second and further lags of the level as instruments for the differenced equa-

tion makes use of the following moment restrictions:
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E(Y,c-Ag,)=0, 5=23,...

If these moment restrictions hold, then the lagged levels will be valid instruments, be-
cause they are correlated with the regressor variable. The suggestion of Anderson and
Hsiao was refined by Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond
(1991), who propose to use an efficient GMM estimator that uses al available moment
restrictions optimally, instead of the IV or 2SLS method. Formally, the moment equa-
tions are written as a system, in order to be able to use a varying number of instruments
according to availability. The instruments are weighted optimally using the Hansen
(1982) two-stage procedure.

In order to investigate the feasibility of the standard approach in the context of the
model with time-varying coefficients, we look at the first difference of equation (2),
also focussing on the simple case of a static target:

Ayi,t = (”IA(ri,t—lyi,t—l)+(1_(”I)A(ri,t—1:ui )"'Agi,t . (7)

latent process

Unlike the linear case, the expression containing the unobserved 4 is not differenced

out, and we have to deal with atime-varying error component that is correlated with the
explanatory variables. Instruments that are uncorrelated with this latent process, but
correlated with the explanatory variables in such a way that each of the coefficients is
identified are hard to come by. The following sections are devoted to finding moment

conditions that make estimation feasible in practice.

3  Two non-linear moment conditions based on quasi-differencing

This section discusses two nonlinear transformations of the adjustment equation that
eliminate the unobserved heterogeneity. Holtz-Eakin, Newey and Rosen (1988) pro-
posed quasi-differencing as a strategy in a case where fixed effects are subject to time
varying shocks that are common across individuals." We explore whether this method
can be generalised to the more complicated case at hand, where coefficients are endoge-

nous and vary over time and individuals.

! See also Chamberlain (1983), p. 1263-64. | thank Olympia Bover for reminding me of this ‘classical’
strategy.
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Literally, the quasi-differencing procedure as proposed by these authors involves lag-

i

ging equation (1), multiplying both sides by and subtracting the result from

1- oy
equation (1). After reordering coefficients, this gives:

1-o; ‘ 1-o,
AYi t _—’tlai,t—szi -1 (1_ ai,t—l) AXMB =&~ =

1 1 Eiia-
0 0

(8)

The unobserved heterogeneity has duly been eliminated, but this equation is difficult to

deal with, because in general ¢, is correlated with ¢, and «;,_,. The underlying
idea nonetheless leads to useful moment conditions, actually in two different ways.

First, dividing equation (8) by (1-«;,,) gives

1 Oy .
Ay . — : AV. — AX. =y ., 9
1_04,t—1 & 1_04,t_2 Vi I'tB Vis 9)
with
v, = bt (10)

- 1_0%—1 _1_0%—2 .
This transformation — which shall be referred to as "QD1" — corresponds to solving
equation (1) for the expression yi,t—l_x;,tﬁ_ 4, then solving the lagged version of (1)
for y,._,—xB— and ultimately differencing 4 out. Second, we may multiply

equation (9) by 1- ¢« _,, to obtain:

l-o, .
1 — AYi T ai,t—szi -1 (1_ ai,t—z ) AXi ,tB = é:i,t ’ (11)
- ai,t—l
with
1-o,
é:i,t = 1 = i~ & (12)
- ai,t—l

This transformation shall be labelled "QD2". It corresponds to multiplying equation (1)
by (1, ,)/(1-e, ) and subtracting the lag of the original adjustment equation.
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Proposition 1: Under assumption (2), the levels y;,_, x;,_, and the regime indicators

r, ., P22, areinstrumentsin equations (9) and (11), that is:

0,

E(yi,t—pl//i,t): E(yi,t—pé:i,t)
E(Xi,t—plm,t): E(Xi,t—pé:i,t) =0,
E(ri,t—pl//i,t)z E(ri,t—pfi,t)z 0.

Proof: If E(&,|Q;,,)=0, with Q, , someinformation set that varies over individuals

and time, then any function f (€;,_,) will be orthogonal to &, ,, because
E[ f (Qi,t—l)gi,t} = E|: f (Qi,t)gi,t ‘Qi,t—l:l = E[ f (Qi,t—l) E(gi,t ‘Qi,t—l)] =0. (13)

Consider first E(,,_¥;, ), With p>2. By iterating equation (1), y;,_, isa function of

(i pa i pare o K ps X pasee s Epr & pasee s Vi) - The expressions — and
it=1
are functionsof r,, , and r,,_,. Applying (13) to the products e g, and
l—Otiyt_2 1- it-1
Yitp

o yields E(y;, ;) =0. The other orthogonalities follow likewise. [
it-2

If assumption (2) is replaced by E(ei,t‘Qiyt_k):O, then the set of valid instruments is
pushed backward in time accordingly.

To discuss estimation on the basis of the two sets of moment conditions, it is useful to
rewrite the transformations (9) and (11) somewhat. Equation (9) has the convenient

feature that Ax;'tﬂ enters additively. Collecting terms, we can write:

1 1 .
Vie = Ayi,t—l + (1—Ayi,t _—Ayi—t—lJ _Axi,tB

iy 1- G2
=AY+ A('Y T LAY ) - AX;,tB

:Ayi,t—l"'Y'A(ri,t—lAyi,t)_AX;,tB1 (14)
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with

(1 1
y_[l—al 1_%}. (15)

Equation (14) is linear in the coefficient vectors y and B, and can be estimated by lin-

ear GMM using the moment conditions of Proposition 1. It relates the structural coeffi-

cients a to the elements of y by a nonlinear one-to-one transformation, see equation

(15). Inverting this transformation therefore gives a nonlinear GMM estimator of a.

Standard deviations and covariances can be assessed using the delta method.

Putting QD2 to use for GMM estimation is trickier. Let d(rivt_z,ri,t_l) be an L*x1

indicator vector, where each element is a dummy variable indicating one of the possible

switches from r,, , to r,,,. Let & be the vector of coefficients (1-¢,,)/(1- )

corresponding to the elements of d(-):

vl o e o ray lma )
l-o, 1l-o, l-o, , 1-¢

Let furthermore & be a vector of products of the adjustment coefficients, (1-a), and

(1-o,)B
62( —(1)®|3= (1_?{2)13
(1-o, )P
Finally, let
A
n=|-a |=h(a,p) (16)
—0

be an L(L+1+K)x1 vector of reduced form coefficients, of which L(L+K) are un-

known. Then we can write:
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éfi,t = )"'d(r',t—Z'ri,t—l)Ayi,t _u'ri,t—ZAyi,t—l _6Iri,t—2AXi,t

= |:d(ri,t—2’ri,t—l)lAyi,t ri:t—lA 11 ri,t—lAXi,t]n'

Aswith QD1, this equation is non-linear in the structural parameters a and f, and lin-
ear in atransformed coefficient vector. However, here there is no convenient one-to-one
transformation from = to the structural parameter. The nonlinearity of the problem
therefore has to be treated explicitly. Consider the simplest case, with two states and no

explanatory variables x; . Then A and a have two elements each and we can write:

r=h(e)=[1 4 2% 4, 4|
l-o, 1-o

In principle, there are two ways of estimating the structural parameters. First, we may
estimate the coefficients n together with the covariance matrix, and then go to the
structural parameters using (16). As the reduced form has more parameters than the
structural equation, the structural parameters are over-determined. The information can
be aggregated efficiently using the classical minimum distance (CMD) estimator. Sec-
ond, we may treat the transformed equation directly as a nonlinear estimation problem
in the structural parameters. These alternatives shall be discussed in turn.

Let 6,=(a," PB)" be the true vector of structural coefficients and m,=h(8,) be the
true vector of reduced form coefficients. We assume that there is a consistent and as-
ymptotically normal estimator #, of =, with Avar+/N (#t, —=,)=&,. The vector 7,

could, for example, be a GMM estimate of the reduced form equation. Any hypothetical

value 0 of the structural coefficients implies a vector of reduced form coefficients

h(6). The CMD estimator determines @ in such away that the weighted deviations of
h(é) from their counterparts & resulting from the unconstrained estimation is mini-

mised.2 That is, 0 isto solve:

min(#-h(8))(7-n(d)),

2 See Wooldridge (2001) and Newey and McFadden (1994) for a discussion of CMD estimation.
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with Q a possibly data dependent positive definite weighting matrix. Under these as-
sumptions, the CMD estimator is consistent and asymptotically normal.

A weighting matrix is efficient if it leads to a CMD estimator with a"smaller" variance
than what could be obtained from any other weighting matrix, in the sense that the dif-

ference between their asymptotic covariance matrices is positive semi-definite. It can be
shown that an efficient weighting matrix is given by Q = =1, with £ any matrix such

that plimé:EO, provided that =, has full rank. Therefore, the inverse of any consis-

N—eo

tent estimator of Avar/N (#, —=) is an efficient weighting matrix. Let H(6) be the

L?x L matrix of partial derivatives of h(0):

H(0)=V,h(0)= [ah( ),...,ah(e)}.

96, 96,k

Thei'th column of H(0) isthe derivative of h(0) with respect to . Using an efficient
weighting matrix |eads to:

d

JN(6-0,)— N(O,[H(eo)'aglﬁ(eo)]’l).

The appropriate estimator for the covariance matrix of 0 thenis:
~ A1
Estvar(6)=| H(6)'27H( /N '(Est var (7)) 1H(0)} .

Linear restrictions, such as the equality of coefficients, can be subjected to a standard
Wald-test. Alternatively, a criterion function test statistic is available.

There is a drawback to the CMD procedure in the given context. For asymptotic effi-

ciency we need the matrix pIimé =X, to be of full rank, such that the inverse matrix

N—co

can be formed. If the reduced form is to be estimated by linear GMM, this requires that
each of the reduced form parameters is separately identified by the moment conditions.
Thiswill not always be possible. As we have seen, & represents four reduced form pa-
rameters in the case of two states and no explanatory variables. With three states, it is

already nine parameters. Each explanatory variable adds L parameters to the reduced
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form coefficients vector. In practice, the information content of the available instru-
ments may not be sufficient to identify all of the many reduced form parameters sepa-

rately. And athough CMD estimation can be performed on the basis of any positive

definite matrix, the weighting matrix Q =Z" for efficient CMD would then cease to

exist in the limit.

Therefore we may prefer to estimate directly in terms of the underlying structural pa-

rameters.
Cj':i,t :[d(ri,t—Z’ri,t—l)lAyi,t ri:t—lAyi,t—l ri:t—lei,t]'h(a B) (17)

Though nonlinear in the parameters, this equation is linear in the transformed variables.
This makes it easy to use the Gauss-Newton method for solving the optimisation prob-
lem inherent in GMM estimation, using routines for linear GMM in performing the it-
eration steps. Appendix B elaborates on the Gauss-Newton method in the context of
non-linear GMM problems. As initial values for iteration, we can either use CMD esti-

mates or the results from nonlinear indirect estimation exposed earlier in this section.

The transformations QD1 and QD2 are nonlinear, and the stochastic properties of the
transformed residuals depend on the adjustment parameters. Consider the transformed

&it _ it 1_04172

E

residuas v, = N on the one hand and ¢, = 3

(— &, Onthe
— i 1- i — Ui
other. The variance of y;, will become large if one or both alpha-coefficients are in the

neighbourhood of 1, creating problems in small samples. An adjustment coefficient ap-

proaching 1 will affect &, to alesser degree. First, only one of the two components of

the difference is affected. Second, the effect is mitigated by the denominator, 1-¢; _,.

The random factor (1-a;,,)/(1-@;,) in &, can take three values, of which only one

is larger than 1. Indeed, if the apha coefficients are of similar size, the random factor
will stay in the neighbourhood of 1. Therefore, when the alpha coefficients are high (i.e.
adjustment speed is low), efficiency gains can be expected from using QD2. | will in-

vestigate thisin a simulation study below.

® For thistest, and a criterion function specification test, see Wooldridge (2002).
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4 Two moment conditions based on linear transformations

4.1 Forward differences and generalised differences

Being nonlinear, the transformation we just investigated may lead to poor results if in
one or more of the regimes the adjustment speed is very low. They cannot be used at al
if one of the regimes is characterised by an adjustment speed of exactly zero. Thisis a
case of considerable theoretical interest, as the presence of fixed adjustment costs or
irreversibility leads to bands around the target where no adjustment takes place — the
solution to the stochastic control problem triggers adjustment when some threshold
level is surpassed. In aliteral sense, this sort of behaviour is to be expected only when
decisions on single projects are considered, as opposed to entire firms or sectors. But it
is certainly useful to explicitly consider regimes of no adjustment, as have done parts of
the literature, eg. Caballero, Engel and Haltiwanger (1995)

To this end, it may be worth asking whether there is a linear transformation that could
be brought to bear on the problem at hand, in the spirit of the first differencing proce-
dure. As we shall see, there is such a transformation if the regime indicator has limited

memory with respect to ¢, ,. We start by looking again at the first difference of vy, ,:
Ay, , :a‘IA(ri,t—lyi,t—l)+(l_a‘l)A(ri,t—lX;,t)B+(l_a‘l)A(ri,t—lfui )+A8Lt )

For unchanging adjustment regimes, r, _, =r, _,, thissmplifiesto
Ay, =a'r LAY, +(1-a')r Ax B+AE .

This expression looks very much like the first difference in the linear case, athough

there is more than one adjustment coefficient to estimate. Taking first differences of

observations that belong to different regimes leads to a latent term (1-a')Ar; x4 that

will be correlated with the lagged dependent variable under avariety of circumstances.

As it is this term that makes the use of the standard technique difficult, the following

strategy comes to mind: Differences are only formed for observationswith r, _, =r, ;.

On the basis of cases where two consecutive observations belong to the first regime, we

could estimate a,, and using differences of observations that both belong to the second

regime, we could infer on a,, etc. In this straight fashion, however, the idea will not
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work. The transformed residual Ag,, has an expectation different from zero in the two

groups of observations. Thisisbecause r,,_, and ¢, are correlated by assumption. The

expectation E(gi -

r(l)i’t_1 :1) is not equal to zero, and neither is E(gi -

r(2),, = 1) .
Selecting residuals according to regimes will lead to biased estimators.

If &, isuncorrelated with past regime indicators, r, _,,r, _,,..., thenwe are ableto use a
modified differencing approach. Autocorrelation of ¢, is permitted if the usual require-

ment of limited memory is satisfied. The following two principles will generate moment

conditions involving the use of lagged endogenous variables as instruments:

1. Let g bethemaximum z for which thereis acorrelation between r,, and ¢,
€g. as a consequence of an MA structure of the state driving the regime indicator
as exemplified in Assumption 2. Then the observation is to be transformed sub-

tracting past observations of the same regime with alag of at least s=2+q¢.

2. If an observation is not matched by a 2+q-lag in the same regime, it may be

transformed using any other lag s> q+2.

The second principle avoids the loss of many observations in cases where regimesin t
and t+q do not match because of regime switches. What | propose here is a dynamic

filter, which varies according to regimes.
Similar to (7) we obtain for the sth difference:

(Ve = Yies) = (B ¥ —BeaVion) + (@) (R =0 o ) 1+ (8 -6
which simplifiesto

(Y= Yies) =@ B (Yoaa = Yorosa) (80— Es).
if the two observations are characterised by the same regime, such that r,, , =r,_,.
When does the conditional expectation of the residual term, (&, — ¢, ) , become zero?
It is sufficient that ¢, and ¢, are both uncorrelated with the conditioning variables,

which are r,, and r,__,. Now assume ¢, to be uncorrelated with r, , and 1, .
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Then the same is true with respect to ¢, and r,,_ . Therefore, by choosing s, we
have only to make surethat ¢, and r;,_; are uncorrelated. Thiswill never happen with

s=1, aswe have seen before. However, if r,, isuncorrelated with al lags of ¢ , then

it?

s= 2 will ensure that

r

it-1 =

E(gi t —& it-s—1

ijt-s

)=0, (18)

regardless of whatever value r,,_, and r

s take. More generaly, if there is correlation

between r,, and ¢, uptolag 7=, the difference that guarantees the above equation

to hold will be at least of order s=2+q. GMM estimation on the basis of this
transformation may be called forward difference estimation. But we are not restricted to
using only differences of the order that is"just right", i.e. 2+q. Any other difference of
order s>2+q will fulfil eq. (18) just aswell. Therefore | construct the difference using
the most proximate observation of the same regime with lag s> 2+q. With respect to
admissibility and validity of instruments, the rules of the classic approach apply: the
instruments need to be uncorrelated with the earlier of the two observations that make

up the difference. In the following, this procedure will be called the generalised differ-

ence estimator.

To state the moment condition, | have to strengthen assumption (2). In addition to the

variables in the conditioning set €, ,_,, &, must also be uncorrelated to the future re-

ri,t+q+2"" '

gimes Y g+l
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Proposition 2: Let the conditional expectation of &, satisfy

I.i g+g+2, 0

E(gi,t‘Qi,t—l' ):0' (19)

ri,t+q+1'

with Q;, , defined asin (2). Thenthelevels y,, . , p=1 arevalid instruments for the

equations transformed by taking the s'th difference, with s>2+q:

E((gi t & ,t—s) Yitcsp ‘ri,t—l = ri,t—s—1) =0. (20)

Proof: The proposition follows from the law of iterated expectations:

r

E( Yi t-s-p (gi & ,t—s) it-17 ri,t—s—1)

= Eym,yp (E( yi,t—s—p (gi T gi ,t—s) ri,t—l’ ri,t—s—l’ yi,t—s—p ))

=E (yi’t_s_p'E(gi,t_gi,t—s

Yit-s-p

Lt litso yi,t—s—p)) =0,

because the conditional expectation within the brackets is zero for s> 2+q. The back-
ward solution (3) and (4) decomposes y,, into v, ,, 4, and the history of ¢, and r, .
Condition (19) ensures that the expected values of ¢, and &, do not depend on the
components of y,, . . The additional conditioningon y,, ., can have no influence on

the expected value. [

As in the case of the two nonlinear estimators, r,,, must be uncorrelated with the cur-

rent error term. The generalised difference approach cannot work if the regime indicator
IS contemporaneous with respect to the current error term. Furthermore, it is an identi-
fying assumption for the process that drives the regime indicator to have finite memory

with respect to innovations ¢, . Thisis alimitation of the approach. If r,, were corre-
lated with all past values of ¢, the conditional expectation of the transformed error

term resulting from a difference of two observations from the same regime would not
disappear. The resulting bias can be expected to wane if the minimum lag length is cho-
sen to be large. But doing so would result in losing many observations, exacerbating
another weakness of the estimation strategy.
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4.2. Testing the validity of the length of memory
In order to use generalised differencing, we need to decide on the length of the memory

of the process driving the regime with respect to ¢, . Thisis difficult to do on an a pri-

ori basis. There are two simple solutions. The first is to use the Sargan-Hansen test to
check the appropriateness of the transformation. This is straightforward, as the Sargan-
Hansen test is atest of the validity of the moment conditions. The drawback is that the
Sargan-Hansen test is generally used as an omnibus test of the specification, including
the choice of the instruments. If we employ the Sargan-Hansen test as a means of find-
ing the correct lag length, then estimation will be conditional on the test statistic being

insignificant. For further purposes, the test is spent.

Alternatively, we may base atest on the fact that the expected value of the residual will
not disappear if the lag length chosen is too short. In that case, as we have seen, the
choice of observations belonging to one regime or the other will select positive or nega-

tive outcomes of &

ity

because of the correlation between the regime variable and the
error component ¢, . If we enter regime dummies into our specification, they will be

estimated as positive or negative quantities according to the direction of selectivity, al-
though they should be zero according to the basic specification. Furthermore, we know
how these estimates for regime constants are distributed under the null of a correct
specification. Using a GMM estimator, they are asymptotically normal, with mean zero,
and their standard deviation is given by the standard deviation of the coefficient. There-

fore, the t-value on these coefficientsisavalid test statistic.

It may be argued that this test ignores the possibility that the regime-specific constants
truly belong into the equation. Consider a trend in the term in the brackets of equation

(1) that makes the target level of y,, change over time:
Ay =—(1-0q ) (Viu—Kt—p)+5,.
Solving for vy, , we get:
Vi =0 Yt (1o )kt +(1-0p ) i + &,
After transforming the equation by subtracting an observation belonging into the same

regime, lagged A periods, we have
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Yii = Yiea = ai,t—l(yi,t—l_ yi,t—/l—l)"'(l_ai,t—l) Kﬂ”"'(gi,t _8i,t—/l) .

Regime-specific constants may thus be the result of atrending target variable. However,
in this case they should be proportional to each other, with a factor of proportionality
given by 1 minus the regime-specific coefficient on the lagged dependent variable. Us-
ing the delta method to test this restriction is relatively straightforward. More generally,
they should not be of different sign, asit will be the case if the coefficient on the regime

dummy collects the residuals selected for their high or low value.

4.3. Moment restrictions for the equation in levels

Both estimation methods discussed above — the two moment conditions for quasi-differ-
ences as well as the generalised differences approach — require the regime variable to be
predetermined with respect to the current shock term. This may hold in many cases,
specifically if there are long planning and gestation lags as in investment decisions. In
other circumstances, the error term in the adjustment equation and the threshold variable
governing the adjustment regime may be contemporaneously correlated. | will inves-
tigate an approach that can be brought to bear in this case. For greater clarity, the ad-

justment equation shall be rewritten as follows:
Ayi,t :_(1_04,t)(yi,t—1_x;,tl3_/‘i)+€i,t’ (21)

o Y=o Ya+(1-a,)(xB+u)reE, . (22)

The dating of the adjustment coefficient has been changed, to highlight the possibility

of a contemporaneous correlation between the speed of adjustment and ¢, , .

It turns out that this structure can be accessed by means of level estimation, relying on a
type of moment condition that was introduced by Arellano and Bover (1995) and Blun-
dell and Bond (1998) as a response to a specific problem arising in the standard autore-
gressive model. If the coefficient of the lagged dependent variable is in the neighbour-
hood of one, the level behaves like a random walk and will be aweak instrument in the
differenced equation. Under certain conditions, the following moment equation can be
used in the estimation of the standard autoregressive model, as stated in Section 2

above:
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E[Ayi,t_s(,ui +gm)} =0,

with s>1. If g isseridly uncorrelated, it is sufficient that y;, is mean stationary and

displays a constant correlation with g for the moment equation to hold. Blundell and

Bond (1998) have shown that this implies a requirement on the initial conditions. the
deviation of the starting value from the stationary level needs to be uncorrelated with
the stationary level itself.

The latent term of equation (22) is given by (1-¢;, ) 4 +¢,, . In the attempt to use first

differences asinstruments for levels, wefirst ook at
E(Ayi,t_s((l_“i,t)ﬂi +gi,t)) .
This expectation will be zero if, first, EAy, =0, and second, Ay, is uncorrelated

with both (1-¢;, )4 and &, . The first condition requires the process to be mean

stationary, as in the derivation of Blundell/Bond and Arellano/Bover. The second con-
dition is hard to fulfil. To see why, we adjust the backward solution to the modified
dating:

t
Vit :[yi,o _X;,1B_/Ui]H0{i,k +X;,tB+lui +A,.
k=1

Plugging this back into (21) we obtain:

Ay, =—(1—ai,t)([yi,o —x;,lﬂ—ui]ﬁai,k + A,t_l—Ax;,tﬁjw,t- (23)

k=0
The difference Ay, isafunction of al ¢ ,, Ax;, and ¢;, and, k=>s, as well as of
the initial condition. One of the requirements for the covariance of Ay, . and
(1-e, ), to disappear is therefore a limited memory of ¢, =a'r;, with respect to its
own past. This excludes all sorts of fixed effectsin r,, . For the estimation problem at

hand, a direct adaptation of the Arellano/Bover and Blundell/Bond strategy therefore
does not look very promising.
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We can weaken the requirements considerably by decomposing the target level, y, into
its expectations over all individuals, «°, and the individual-specific deviation 4 . | de-
fine:

py =4+ g with 4° =E, 4.
The parameter 4° is the expected value over dl individualsi, and « is the individual

deviation from this expectation. By definition, Ex =0. Rewriting the adjustment

eguation, we arrive at:

V=o' (r Y )+ (1-a)r x B+ut(1-a')e + 4 (1-0')r +&, . (24)

latent term

This equation contains a new, regime-specific shift term #°(1-a')r;,. In estimation,
this term can be taken into account by introducing the regime vector r,,_, as aregressor
into the equation. Investigating under what condition Ay, is an instrument for the

rewritten equation, we arrive at:

Proposition 3: In order to estimate equation (24), we can make use of the moment re-

striction
E(Ayi,t—s((l_ai,t):ui*+8i,t)) , 52K, (25)
under the following two sufficient conditions:

a) E(gi,t ‘gi,t—k e o A 0 AX e T o T e Yo — X B 44 ) =0;

b) E(:Ui* Hgi,t} ’{ri,t} ’{Axi,t} ’(yi,O _X;,ll}_:ui )) =0,

where a term in curly brackets, {-}, denotes an entire time series. In both parts of the
condition, the invariance with respect to the initial value can be dispensed with if the

process has been running "long enough” for E( ym) to have converged.
Proof: Moment condition (25) holdsif, first,

EAY, & = E(Ayi,t—k : E(gi,t ‘Ayi,t—k )) =0, (26)
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and second,
E(AY, . (1-a, )4 )=0. (27)

Given the backward solution (23), condition @) is sufficient for the expectation in the

bracket of (26) to be identicaly zero, as {Ayi’t_k} is a coarser information set than

€0 T Tiaia - Yio— 4 } . Similarly, we can write:

E(Ayi,t—k (1_04,t )ﬂ. ) = E(Ayi,t—k (1_04,t ) ) E(ﬂi* ‘Ayi,t—k (1_04,t ))) :

Again, if, as in condition b), the expectation of x is zero conditiona on all random
variables that may enter Ay, , according to its reduced form, the expectation in (27) is

zero, too. [

It goes without saying that, if the conditions for its use are met, the moment condition
can also be used in the case of a predetermined regime indicator. It is natural that we

have to impose conditions on g, now that we leave it in the equation instead of differ-
encing it out. The invariance of expected w4 with respect to the time path {giyt} isquite

unproblematic. It accords well with the basic structure of the error component model.
The irrelevance of the regime process is less innocuous. It is well conceivable that a

real-world data generating process for r,, may contain a fixed effect that is correlated
with x . This would invalidate the moment equation (25). Similar reservations apply

with respect to the required irrelevance of {Axi’t} . Lastly, the necessity of having an

expected value of 4 that is independent of the initial deviation, (y,,—u ) was also

found by Blundell and Bond (1998) when investigating the use of moment equations for
levels in a linear context. The condition is not innocuous either: it excludes an initial

condition such as y, , = 0. As already stated in the proposition, we can replace it by the

requirement that the process has been running for a "very long" time, as the first term

inside the bracket of equation (23) will disappear asymptotically.

It is interesting to compare the conditions for Propositions 1, 2 and 3. All of them re-

quire the expected value of ¢, to be invariant with respect to past values

133



£ £ ., the levels or first differences of x

st Ei s X aswell asto 4 +x;.p

ijt—s?Fit-s-11°""

and y,,. Propositions 1 and 2 also need ¢, to be uncorrelated with r,_,, the regime
indicator figuring in the current date adjustment equation, whereas for Proposition 3,
invariance of &, with respect to lag s and earlier of the regime indicator is sufficient.
As an additional identifying assumption for the generalised differencing approach, we
need the memory of r,, to be finite with respect to ¢, . This excludes, for example, an
autoregressive equation for the threshold variable driving the regime indicator if the

current shocks are correlated. The level estimator, for his part, needs the expected value
of the individual effect u to be unrelated to the rest of the process, including the initial

deviation (Y, ,— ) . Both of these restrictions can be burdensome. But the two linear

estimators based on Propositions 2 and 3 are able to fulfil special tasks. The generalised
difference estimator will be unbiased even if some of the alpha coefficients are large —
infact it still worksif one of themis exactly equal to 1. The level estimator, on the other
hand, will discern differential adjustment speeds also if the regime indicator is contem-
poraneous. In order to better understand the comparative advantages, the next section

shows simul ation results.

5. Implementing and simulating the estimators

5.1 Setting up the simulation
In the ssimulation study, the three sets of moment conditions are used separately for es-

timation. For the regime indicator, | specify a threshold process. The K'th element of r, ,
isgiven by
r(k),, = Ind(ck—l S§; s Ck) :

The numbers c,,...,c_ are thresholds, with the first and the last element being equal to

—oo and oo, respectively. As an example for a threshold process with infinite memory

with respect to the error term we use an AR(1):

S = kst—l'H)i,t ,
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where the current shock v, is contemporaneously correlated with the error term ¢ .

Alternatively, as an example of a process with finite memory, it is assumed that the
threshold process be driven by an MA(Q):

q
s,=a+Y bn,,, withb =1,
i=0

The elements of the moving average conform to:

En,=0, En n,.. =0Vk>0, En.g, #0, Eng, =0Vk>0.
Concretely, the two interrelated processes {ri’t, yiyt} are simulated as follows:

Regime-dependent error correction process. ¢, is standard normal, 4 follows an
N(11) process, ¢, and u are independent. As a benchmark | use o, =0.3 and

o, =0.8. Note that the larger of these coefficientsis not far from 1.

Regime indicator process. If the threshold process is driven by an AR(1), | set
Ev, ’=1 Ev,s, =08, v, being calculated as a weighted sum of ¢, and an in-
dependent Gaussian process. The AR-parameter k is 0.8. Likewise, for the MA(Q), the
stochastic structure is chosen as E7, * =1 En, &, =0.8, with 7,, being calculated as a
weighted sum of ¢, and an independent Gaussian process. The threshold level is set
equal to zero, resulting in an equal number of observations in each regime on average. |
experiment with a MA(0) (uncorrelated regimes states) and a MA(1) with b =0.8.
Note the high contemporaneous correlation between the shocks in the regime equation

and the error term.

Panel structure: The panel is unbalanced, with individuals carrying either 8, 9 or 10
observations, 1,000 of each type, that is 3,000 in total. For each individual, the process
is simulated for 50 periods, and only the last 8, 9 or 10 observations are used for esti-

mation.

All estimators are implemented by first calculating the transformed observations and the

instruments and then adapting and using the routines supplied with the DPD module for
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Ox written by Doornik, Arellano and Bond to perform GMM estimates and tests.” De-

tails on the estimation routines follow.
a) Quasi-Difference estimations

| assume an AR(1) as a process driving the threshold variable that constitutes the re-
gime. The estimation equations are transformed in the way described above. The first
version of the quasi-differencing approach, QD1, is implemented by estimating the
transformed equation using a standard linear GMM estimator and then calculating the
structural parameters by inverting equation (13). The more complicated QD2 estimation
is performed by treating the moment as a non-linear function of the structural parame-
ters, as in equation (25). Both CMD estimations on the basis of the linear reduced form
and direct non-linear GMM estimation of the structural parameters were used. The latter
was implemented using the iterative Gauss-Newton method. The results are rather
similar. For the conceptual reasons mentioned in the text, the nonlinear GMM proce-
dure is preferred, and only these results are shown. It has to be mentioned though that
the CMD procedure is clearly faster than the iterative nonlinear GMM estimation pro-
cedure, without being less efficient.

The procedure used for QD2 estimation is explained in some detail in Appendix 2. The
Gauss-Newton method iterates on a linearised moment function calculated for prelimi-
nary estimates, sequentially improving the estimation. Calculating pseudo-observations
for each step, the estimation problem can be solved using routines for the estimation of
linear econometric models. As initial values, | use parameter estimates on the basis of
the QD1 transformation. CMD estimates on the basis of the same moment condition
could also be used. Indeed, they yield better initial values, but were not chosen here
because of the conceptual problems with the asymptotics. As instruments, | use levels
lagged twice. It turns out that the instruments are more informative (the estimates being
more precise) if they are separated out in regimes. That is: For purposes of instrumenta-

tion, thelagsof y,,_, areinteracted with regime dummies, r, _, .

4 Ox is an object-oriented matrix programming language. For a complete description of Ox see Doornik
(2001).
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b) Forward Differences and Generalised Difference estimation

When implementing the difference estimator, we can use the moment conditions in a
specific way that greatly facilitates the calculation of moments. Proposition 1 requires

us to calculate the A'th difference of every observation, with 4> q+2 and differences

being taken using only observations in the same regime. Then we may use levels lagged

A+1, A+2,... asinstruments. It seems that this requires us to make the set of instru-

ments for a specific observation dependent on whether or not there are two observations
in the same regime within a specific time distance. By taking the earlier of the two ob-

servations as a point of reference y,, and assigning to it the nearest lead y,,, of the
same regime with 4> 2+q, the definition of suitable instruments is straightforward.
We can uniformly uselags vy, ¥;,_, and earlier asinstruments.

| have experimented with two variants of the differencing approach. The "Forward Dif-

ference Estimator” uses a fixed lead of s=2+q. This transformation preserves the
correlation structure. However, it also leads to a heavy loss of observations, as only ob-

servations fulfilling r,,, =r, ,, , can be transformed. The "Generalised Difference Esti-

mator" uses the fact that the moment condition for differenced observation presented in

Proposition 1 holds for all leads s> 2+ q. The transformation thus is carried out using
the nearest lead s>2+q withr,_, =r, .. ,. Dueto the larger number of valid observa-

tions, this results in much more precise estimations. Only the results for this estimator

are shown. As in Quasi-Difference estimation, | interacted the lagged levels y,,_, with
regime indicators r,,_,. In order to test the validity of the transformation, regime dum-
mies are included as additional RHS variables. They also enter the instrument set.

C) Level estimation

As described above, the level estimator isimplemented by specifying an artificial equa-

tion that contains the vector r,,, as an additional RHS variable. Instruments are the
levels of r,,y;,, (i.e. two interaction terms) and current regime dummies in those col-
umns where the regime variable is predetermined, and r, .y, , plus lagged regime

dummies where the regime variable is contemporaneous.
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5.2 Simulation results

Tables 1 and 2 show estimates on the basis of quasi-difference transformations (1,000
runs). The theoretical discussion has shown that the finite sample properties of the esti-
mators may depend on the size of the regime specific coefficients, notably on their dif-
ference from 1. Therefore estimations for a whole range of parameters are shown. The

true value for ¢ isset as 0.3, whereasthe value for ¢, rangesfrom 0.3 to 0.9. Larger

ranges and finer steps are plotted in Figures 1 and 2.

For the construction of Table 1 and Figure 1, the ssimpler QD1 transformation was used.
Whereas for smaller coefficient values the estimator performs well and yields correct
estimates with a good precision, it is less reliable if one of the regime specific coeffi-
cientsis large. For ¢, = o, =0.3, the mean bias is only of the order of -0.0004 for both
parameters. It will be 0.0177 for ¢, when ¢, israised to 0.7, and for o, =0.9 the fi-
nite sample bias of ¢, becomes a non-negligible -0.0415. The estimates ¢, also
deteriorate, although less markedly. The table also gives t-values and Sargan statistics.
The bias leads the t-tests for the true value of individua coefficients reject too often
when one of the coefficients is too high: In the extreme case of «, =0.9, the true value
IS regjected 77.9% of the times. The same is true for the Sargan test of instrument valid-
ity: with large regime specific coefficients, it rejects the instruments too often. We can

conclude that slow speeds of adjustment (high persistence) create a problem for QD1
estimation.

Table 2 and Figure 2 give results for the QD2 transformation, moment condition 2. As
was expected, the estimator performs better for large values of regime specific coeffi-
cients than its counterpart based on QD1. In the extreme case of ¢, =0.3 and ¢, =0.9,
the biasis 0.015 and 0.017. In terms of absolute value, thisis about half of what resulted
from QD1. For smaller values of regime specific coefficients, there is hardly any bias at

all. Sargan statistics and t-values remain reliable but for very high values of ¢, .
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Figure 1: Mean bias for estimates on the basis of QD1,
with ¢4 =0.3 and ¢, varying
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Figure 2: Mean bias for estimates on the basis of QD2,
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Figure 3: Mean bias for estimates on the basis of QD1, with
0, =0.8 and «, varying

‘ansi-Differences 1: Bias as afunction of dpha2

0.02 -

0.01F \

[~ biss dphal x dpha2 - - bias dpha2 x dpha?]

~.

0.00f <
001 ™
0.02 —
0.03
0.04

-0.05¢
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The theoretical discussion showed that the precision of the QD2 estimator should de-

pend on the difference between the regime specific coefficients. If both of them are

high, but of similar size, the ratio (1-¢;,,)/(1- ;) in the definition of the trans-
formed error term &, cancels out, see eq. (12). The error term in QD1, in contrast, de-

pends on the absolute distance of the regime specific coefficients from 1. To study this
issue, the ssimulations of QD1 and QD2 estimation are performed using a value of

o, =0.8 asaplatform and varying over ¢, . Theresult is shown in Figures 3 (QD1 esti-

mation) and 4 (QD2 estimation) Here, the QD1 estimates are biased throughout the

range. The bias of &, switches from positive to negative, whereas the bias of ¢, is

negative throughout. In contrast, with QD1 the bias practically disappears when both

parameters are large, to be noticeable only when ¢ issmall.

Table 3 and Figures 5 and 6 give the results using GMM on observations transformed
by Generalised Differences. In Columns 1 and 2 the estimator is correctly used. The
memory of the regime process is restricted — Column (1) assumes uncorrelated regimes,
and Column (2) assumes a threshold process driven by an MA(1). The minimum leads
used in transformation are 2 and 3, respectively. In both cases, the Generalised differ-
ence estimator performs well. The estimates are unbiased. The standard deviations are
similar to what can be obtained from the quasi-difference estimates for the smaller of
the two coefficients and actually somewhat lower for the higher coefficient. In the case
of an MA(1) regime process, standard deviations are higher, as less observations can be
used. Column (1), with a minimum lead of 2, yields an average of 15.058 valid obser-
vations per estimation. This number decreases to 11.277 in Column (2), when a mini-
mum lead of 3 is imposed. On the same set of simulated data, the estimates based on
quasi-differencing can use 21.000 observations each run. Figure 5 shows that the bias of
the Generalised Difference estimator is very small when the conditions for its use are
met and does not depend systematically on the size of the adjustment coefficients. Even
regime specific coefficients equal to or larger than 1 can be accommodated, as long as
the overall process remains stable. Columns (3) and (4) do "the wrong thing". For Col-
umn (3), a minimum lead of 2 is used on data generated with a regime process gener-
ated by an MA(1), where alead of A>3 would be warranted. Column (4) assumes an

AR(1) process driving the threshold variable: this process has infinite memory. Unex-
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pectedly, in both cases the estimator turns out to be biased. However, in spite of a strong
correlation between the shock in the regime variable and the error term, the bias is mod-

erate. In Column (3), only the estimates ¢, are biased, to a degree that is similar to the

performance of the QD2 estimator under the same (unfavourable) parameter values.
When, as assumed in Column (4), the regime process is driven by a process with infinite
memory, the resulting bias is larger, similar in size to the weak performance of the QD1
estimator when one of the coefficients is large. Figure 6 shows how in this latter case

the bias depends on the alpha-parameters.

The specification tests do not fail to detect the erroneous use of the estimator. In both
cases, the regime constant test rejects the specification in 100% of the cases. As the es-
timated coefficients are of opposite sign, they cannot be caused by trending target val-

ues. The regime dummies have "captured” the regime-specific non-zero expectations of

the differenced residuals E(g,, — &, |, =1, 5) for thetwo valuesthat r, , can take.

The Sargan test is sensitive for the misspecification in Column (3) where the wrong lead
is used, rgecting 91.9% of the estimates. Detecting an infinite memory of the regime
variable is harder for the Sargan-test: only 23.2% of estimates in Column (4) are re-
jected.

Table 4, together with Figures 7 and 8, show simulation results for the level estimator,
both for the case of a predetermined regime and a contemporaneous regime. In both
cases, aregime process with infinite memory is assumed. The table and the figures vary

o, for afixed value of o =0.3. In the predetermined case, there is little bias for the
whole range of parameters, with the possible exception of the ¢, =1, where the value of
the bias of &, assumes a moderate 0.01. Standard deviations are similar to what was
obtained with the other estimators. If ¢, assumes a value larger than 1, the estimates

become extremely exact.
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Figure 5: Mean bias for Generalised Differences estimates, with ¢, =0.8

and ¢, varying. Here: regime process uncorrelated over time, correct lead of 2
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Figure 7: Level estimation with predetermined regimes. Mean bias for estimates
on the basis of moment condition 4, with ¢, =0.3 and «, varying
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on the basis of moment condition 4, with ¢, =0.3 and «, varying
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Columns (3) and (4), as well as Figure 8 show that the level estimator indeed success-
fully copes with contemporaneous regime variables, a problem that cannot be solved by

any of the other approaches. There is a moderate bias that peaks 0.012 for ¢, when
o, =0.9, and the standard deviations are higher than with a predetermined regime for
o, <1. Again, for «, >1 the level estimates become very exact. In al columns, the
regime dummy that is artificially introduced into the equation is very near the theoreti-
cal value of E(l—ai’t_l) 4%, aterm that is introduced into equation (24) by splitting up

the firm fixed effect into its expectation and a deviation uncorrelated with the shocks in

the other processes.

5.3 Comparing the estimators
| have presented four different ways of estimating an adjustment equation with time-
varying persistence, all withina GMM framework, albeit with a different set of moment

conditions.

Two estimation techniques rely on transforming the original equation using quasi-dif-
ferences. Both quasi-differences estimators are very precise when all coefficients are
small. When both coefficients are large and of similar size (high persistence throughout
the regimes), the results of QD1 estimation have been shown to be unusable in smula-
tion, whereas the QD2 approach continues to deliver correct results. In Chapter 4, the
QD2 estimator is successfully employed for estimating differential adjustment speeds
for the capital stock. The most difficult parameterisation is when coefficients are widely
different, while one of them is large. While not unaffected by small sample problems,
the QD2 estimator performs clearly better in this situation. In direct comparison, the
major virtue of the QD1 estimator lies in its surprising simplicity, while still being
consistent in awider range of circumstances.

The third method involves transformation using Forward Differences or Generalised

Differences, with a lead that is long enough to overcome the memory in the process

driving the regime indicator for the & -shocks. This method is applicable only when

the memory of the regime processis limited. | have shown how to test this requirement.
Although a limited memory may be a good approximation in a number of circum-

stances, such as investment under financing constraints, the requirement will not always
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be fulfilled. This method leads to a linear estimator which remains unbiased even if
some of the coefficients are in the neighbourhood of 1 or even larger. The forth method
leaves the equation untransformed, and past differences are used as instruments. Regime
dummies are employed to capture and neutralise the time-varying non-zero expected
value of the residual process. The memory of the regime process is irrelevant for this
technigue. However, we have to assume the individual-specific deterministic equilib-
rium to be independent of the shock parameters of the other relevant processes. The
level estimator is very precise with regard to larger coefficients. Thisis not really sur-
prising: the use of level equations has originally been proposed to overcome the prob-
lem of weak instruments in cases where the autoregressive parameter approaches 1.
More important is another virtue of the forth method: the level estimator is the sole pro-
cedure that can be used when the regime indicator is contemporaneous to the error term
in the adjustment equation.

To sum up, the two quasi-differencing methods should be regarded as the standard pro-
cedure, with the QD1 method apt for quick specification search and the QD2 transfor-
mation leading to efficient results in small samples. QD1 must not be used if one or
more of the regime specific autoregressive coefficients are large. A preliminary estima-
tion constraining the coefficients to be equal across regimes may provide a helpful
warning — it can be done using the standard methodology devised by Arellano/Bond,
Blundell/Bond and Arellano/Bover. The two linear techniques are of great value in
cases where the quasi-differencing techniques do not work properly: near unit rootsin at

least some regimes and — concerning the level estimator — contemporaneous regimes.
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Table 1: Quasi-differences, QD1 transformation,1000 runs

Simulation # Q 2 ©)] 4

Spemﬂqatmn state variable AR(1)

underlying regimes

True o 0.3 0.3 0.3 0.3

True o, 0.3 0.5 0.7 0.9

o, Mean parameter estimate 0.2930 0.2955 0.2939 0.2687
Mean bias -0.0041 -0.0045 -0.0061 -0.0313
Mean estimated
<d. deviation 0.0220 0.0236 0.0276 0.0351
Std. dev. parameter estimate 0.0218 0.0247 0.0298 0.0533
RMSE 0.0222 0.0251 0.0304 0.0618
Freqg. rejections of true value 46% 6.8% 59% 25 70
on 5% conf. level

a, Mean parameter estimate 0.2957 0.4938 0.6868 0.8586
Mean bias -0.0043 -0.0062 -0.0133 -0.0414
Mean estimated
d. deviation 0.0194 0.0189 0.0177 0.0139
Std. dev. parameter estimate 0.0197 0.0190 0.0188 0.0203
RMSE 0.0202 0.0200 0.0230 0.0262
Freg. rejections of true value 6.0% 5 4% 12.3% 77 9%
on 5% conf. level
Freq. rejection by Sargan- o o o o
Hansen on 5% conf. level 8.1% 9.4% 16.4% 81.6%
Valid obs. in estimation 21,000 21,000 21,000 21,000

Notes: The table shows estimates of ¢, and «, on the basis of moment condition 1. Columns vary by
parameters ¢, and ¢, used for generating the panels according to eg. (1). Each column represents 1000
repetitions of two stage GMM estimates using an unbalanced panel of 3000 individuals with 10, 9 and 8
observations (1000 individuals each). The number of valid observations is reduced by the need to trans-
form variables. Instruments are the levels of r,, Y, (i.e. two interaction terms) and a constant. Esti-

mated standard deviations are derived from reduced form estimates using the delta method. Estimation is
executed using DPD package version 1.2 on Ox version 3.30 and additional, user written routines.
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Table 2: Quasi-differences, QD2 transformation, 1000 runs

Simulation # (0] 2 3 4

Spemﬂc;atlon state variable AR(1)

underlying regimes

True ¢ 0.3 0.3 0.3 0.3

True «, 0.3 0.5 0.7 0.9

&, Mean parameter estimate 0.2998 0.3006 0.3021 0.3152
Mean bias -0.0002 0.0006 0.0021 0.0152
Mean estimated
d. deviation 0.0221 0.0229 0.0261 0.0418
Std. dev. parameter estimate 0.0217 0.0235 0.0270 0.0463
RMSE 0.0217 0.0235 0.0271 0.0487
Freg. rejections of true value 4.7% 58% 5.8% 95%
on 5% conf. level

&, Mean parameter estimate 0.2985 0.4982 0.6943 0.8790
Mean bias -0.0014 -0.0018 -0.0057 -0.0209
Mean estimated
d. deviation 0.0195 0.0194 0.0187 0.0174
Std. dev. parameter estimate 0.0195 0.0192 0.0188 0.0170
RMSE 0.0196 0.0193 0.0197 0.0269
Freq. rejections of true value 5.9% 45% 5.9% 23.0%
on 5% conf. level

Freq. rejection by Sargan- o o o o
Hansen on 5% cort. level 5.2% 6.0% 6.0% 22.9%
Valid obs. in estimation 21,000 21,000 21,000 21,000

Notes: The table shows estimates of ¢, and ¢, on the basis of moment condition 2. Columns vary by
parameters ¢, and «, used for generating the panels according to eg. (1). Each column represents 1000

repetitions of a two stage GMM procedure iterating on pseudoregressors, using an unbalanced panel of
3000 individuals with 10, 9 and 8 observations (1000 individuals each). As an initial value, an estimate on
the basis of moment condition 1 was used, see the results in Table 2. The number of valid observations is
reduced by the need to transform variables. Instruments are the levels of r, .y, _, (i.e. two interaction

terms) and a constant. Estimated standard deviations are calculated as a by-product from the final Gauss-
Newton iteration step. Estimation is executed using DPD package version 1.2 on Ox version 3.30 and

additional, user written routines.
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Table 3: Generalised Differences Estimation, (¢, ,)=(0.3,0.8) 1,000 runs

... using appropriate leads ... using inappropriate leads

Specification state variable (N} 2 (©)] 4
underlying regimes MA(0) MA(1) MA(2) AR(1)
lead = 2 lead =3 lead =2 lead =2
o, Mean estimate 0.2990 0.2994 0.2950 0.2767
(true value 0.3)
Mean est. std. dev. 0.0215 0.0286 0.0243 0.0223
Mean bias -0.0010 -0.0006 -0.0050 -0.0232
RMSE 0.0118 0.0276 0.0239 0.0322
Freg. rejections of true value 6.4% 3.8% 5.1% 18.0%
on 5% conf. level
a, Meanestimate 0.7978 0.7995 0.7736 0.7568
(true value 0.8)
Mean est. std. dev. 0.0261 0.0304 0.0298 0.0276
Mean bias -0.0021 -0.0005 -0.0264 -0.0432
RMSE 0.0113 0.0296 0.0399 0.0518
Freg. rejections of true value 3.7% 4.5% 14.2% 34.6%

on 5% conf. level

Specification tests

G, Meanedimate -0.0001 0.0000 -0.0765 -0.0977
Mean est. std. dev. 0.0116 0.0145 0.0114 0.0102
Freg. rejections of zero value on 5.8% 5.4% 100% 100%
5% conf. level

G, Meanestimate -0.0007 -0.0010 0.0822 0.0977
Mean est. std. dev. 0.0114 0.0141 0.0114 0.0102
Freqg. rejection of zero value on 4.9% 4.7% 100% 100%
5% conf. level
Freg. rejection by Sargan-Hansen 5.1% 4.8% 91.9% 23.2%
on 5% conf. level
Av. no. of valid observations 15.058 11.277 14.107 15.117

Note: The table shows estimates of ¢, and «, on the basis of moment condition 3 (Generalised Difference
Estimator). Columns vary by the stochastic specification of the regime indicator and by the lead used for
transformation. Columns (1), (2), and (3) specify processes where the memory of the regime variable is
limited over time and the state variable that underlies the regime indicator follows an MA process. In
column (4), the regime process is supposed to have infinite memory. In al columns, ¢, =0.3 and
o, = 0.8 . Each column represents 1000 repetitions of two stage GMM estimates using an unbal anced panel
of 3000 individuals with 10, 9 and 8 observations (1000 individuals each). The number of valid observa
tions is reduced by the need to transform variables. Instruments are the levels of r, Y, ,_, (i.e. two interac-

tion terms) and a constant. Estimation is executed using DPD package version 1.2 on Ox version 3.30 and
additional, user written routines.
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Table 4: Level Estimation 1000 runs

Simulation # Q ") 3 4

Regime indicator Predetermined Contemporaneous

State variable underlying regimes AR(1)

True o 0.3 0.3 0.3 0.3

True o, 0.8 11 0.8 11

&,  Mean parameter estimate 0.3031 0.3004 0.3006 0.2951
Mean bias 0.0031 0.0004 0.0006 -0.0049
Mean estimated std. deviation 0.0197 0.0074 0.0255 0.0073
Std. dev. parameter estimate 0.0187 0.0078 0.0252 0.0079
RMSE 0.0190 0.0078 0.0252 0.0094
Freg. rejections of true value on 5% 4.3% 4.9% 4.7% 10.5%
conf. level

&, Mean parameter estimate 0.7987 1.1001 0.7891 1.1004
Mean bias -0.0013 0.0001 -0.0109 0.0004
Mean estimated std. deviation 0.0188 0.0013 0.0283 0.0017
Std. dev. parameter estimate 0.0191 0.0013 0.0285 0.0017
RMSE 0.0192 0.0013 0.0305 0.0017
Freg. rejections of true value on 5% 57% 5206 70% 56%
conf. level

Auxiliary regime constants

G, Meanestimate 0.6985 0.698 0.6795 0.6922
Theoretically expected 0.7 0.7 0.7 0.7

G, Mean estimate 0.2030 -0.0984 0.2434 -0.0852
Theoretically expected 0.2 -0.1 0.2 -0.1
Freg. rejection by Sargan-Hansen on 4.1% 3.0% 5.2% 4.9%
5% conf. level
Valid obs. in estimation 24,000 24,000 24,000 24,000

Note: The table shows estimates of ¢, and ¢,

on the basis of moment condition 4 (Level Estimator).

Columns vary by parameters ¢, and ¢, used for generating the panels according to eg. (1) and by the

stochastic specification of the regime indicator. In all cases, the regime process is supposed to have infinite
memory, following an AR(1) process. Columns (1) and (2) relate to processes where the regime variable is
predetermined in the adjustment equation, and Columns (3) and (4) results for regime variable that are
contemporaneously correlated with the error term. In al columns, ¢, =0.3. Whereas columns (1) and (3)

specify «, =0.8, columns (2) and (4) show results for ¢, =1.1. Each column represents 1000 repetitions

of two stage GMM estimates using an unbalanced panel of 3000 individuals with 10, 9 and 8 observations
(1000 individuals each). Instruments are the levels of r,,y ., (i.e. two interaction terms) and current

regime dummies in those columns where the regime variable is predetermined, and r, Y, ., plus lagged

regime dummies where the regime variable is contemporaneous. Estimation is executed using DPD pack-
age version 1.2 on Ox version 3.30 and additional, user written routines.
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Appendix A: A state dependent error correction model

Formally, the state dependent adjustment equation considered in this paper involves a
lagged dependent variable and a forcing term x;,. But also higher order adjustment

processes can be accommodated, by redefining states appropriately.

Consider a linear autoregressive process with distributed lags in a forcing term x; , and
an individual specific constant z :

A(L) Yii = B(L)Xi,t HU+E,,

where A(L) and B(L) arelag polynomials. Asiswell known, the process can always
be written in the error correction format. If, for example, A(L) and B(L) are of order

2, thisleadsto

AYi :_¢(yiv'ffl_lei,t—l_:ui*)
+y° '‘Ax;  + 7' Ax, L TOAY, L tE

In the first line, the term in brackets is the deviation from static equilibrium, where
may be interpreted as a cumulative long run effect of a shock in x; . The transformed

constant  isequal to [A(L)]fl 1 . Theterm ¢ isthe speed of adjustment. If the proc-
essis stable, then |¢| <1. The second line depicts the transitional dynamics, which is not
directly related to the deviation from equilibrium. With A(L) or B(L) of higher order

than 2, the transitional dynamics in the error correction format would involve higher
order lags of differences Ax;, and Ay, .

A straightforward generalisation of the adjustment process considered hitherto makes
¢, 7", v,and @ state dependent, while leaving the transformed constant x# and the

long run effect B time invariant. The latter imposes a constraint on the time varying

coefficients. For ssimplicity, | consider all adjustment coefficients as predetermined:
Ayi t _¢|,t—1 ( Yit1™ B IXi,t—l _Iui* ) + 'Yio,t—l IAXi,t + ’Yil,t—l IAXi,t—l + a)l,t—lAyi T &y '(A 1)

Now let again r;, be an indicator variable for the state of adjustment. As the adjustment

process is parameterised over two lags, it is straightforward to model the time varying
parameters as a function involving the state variables in two periods, t—1 and t—2.
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Finaly, let d;,;, be an indicator vector of dummies for al the possible values

(r,.1,_,) cantake. Then we can write:
$a=0d,, @ ,=0d,, 'Y:),t—l = rodi,t—l’ yil,t—l = rldi,t—l’

with ¢, o, I'" and T'' vectors and matrices of state dependent adjustment coefficients

to be estimated. Written this way, the problem is fully equivalent to the one | have
treated in this paper, with d, _, taking the place of r;,_, with respect to the adjustment

speed, ¢, ,, and using appropriate interaction terms for all the other state dependent

coefficients. With the help of quasi-differencing or generalised differencing, we can
eliminate the fixed effect from equation (A1). With contemporaneous adjustment coef-
ficients, we may use the level estimator. It has to be noted though that — compared to a
first order adjustment process — the generalised difference estimator will be difficult to
use, asthere are L° states to be considered here, and only pairs of observations belong-
ing to the same regime with a given minimum time distance can be used. The other two
estimation principles are not affected by this profusion of states, except for the fact that
the number of coefficientsis higher.
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Appendix B: Nonlinear GMM estimation using the Gauss-Newton
Method

The Gauss-Newton method has been developed for Nonlinear Least Squares problems.
Its use in GMM estimation is much less frequent and shall therefore be exposed. See
Davidson and McKinnon (1993) on the use of Gauss-Newton in Nonlinear Least
Squares and Instrumental Variables Estimation, Hayashi (2000) on GMM estimation,
and Judge et a. (1985) on numerical methods in maximisation.

A GMM estimator § maximises an objective function Q, (8), given as

The function g, (0) represents an empiricall moment, calculated for some P-dimen-

sional parameter vector 0 . W isa possibly data-dependent matrix weighting the K mo-

ments. | will assume the specific case of a generalised nonlinear instrumental variables
estimation problem® where the moment function g, (8) can be written as a product of

the vector of instruments and an error term:
1 n
g,(0) :_Zzi (yi —f (xi,O)).
(xk) N7

Here, y, is a scalar, x; is a vector of Q explanatory variables and z, is a vector of

instruments. The double indexation is dropped, and i characterises an observation, not
an individual. Thefirst order condition for maximising the objective function is

) - Ay, -
2:0,(0)=-G, (0], 3, 8.(0)-0.

(Px1) (PxK) (k)

where

(PxK) (1xP)

®> Thisis the most important case and the only one of relevance here. Actually, with the exception of the
pseudo-data iteration technique, the following does not depend on this specific structure of the moment
function.
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is the Jacobian matrix of g, (0), the derivative of the vector of moments with respect to
the parameters. If the equation is nonlinear in variables only, asin the case of the quasi-
differencing approach, we have:

f(x,,0)=x,'h(0),
(1xQ) (QxK)

with h(-) avector-valued function, and thus:

A Gauss-Newton estimation step minimises the objective function Q, (8) with the func-
tion g, (0) replaced by alinearised version. Thisis the core of the iterative optimisation

procedure, but the Gauss-Newton estimation is also useful for generating test statistics.
The first order Taylor-expansion of g, (0) around some preliminary estimator 0, is

2,(0)=2,(0,)+G,(0,)(0-6,)=(2,(6,)-G, (9,)8,)+G, (8, )0

(KxP) (Px1)

The gradient of this linearised moment function with expansion point 0 ; Is a matrix

constant:

Replacing g,(0) in the original objective function by gn(e

0 j) renders a quadratic

function. The first order conditions imply alinear GMM estimator:

A

G, (0 6)'\?vgn(9*‘6,.)=Gn(6j)'w[(gn(éj)—Gn(éj)éj)u;n( |

[«=31
N
cﬁ(-
| I
Il
(—

0 =[G, () W6, (6)] 6, (6) W(e,

[«=B]
~—~——
+
Q

=]
—_—
[«=B]
N
[«=B]
SN—
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Here, @ denotes the solution of the modified problem. All elements on the right hand
side of this equation are evaluated at the expansion point 0, . Gauss-Newton optimisa-

tion iterates on a sequence of these linearised estimation problems, with the updating
equation:

The step length s may be chosen less than 1 in order to ensure convergence in cases
where the objective function is flat in the neighbourhood of the solution.

To perform the Gauss-Newton iteration, we may define pseudo-observations:

X == 1 (x,0,), and

=y (x84 f (3,808, =y~ 1 (x.6, )+,
to obtain:

gn(e éj)z%izi(yj—xje)
and G, (0 éj)z—%izixj.

Thisisthe format of linear GMM estimation. The first order conditions |ead to
* * f ~ * -1 * ~ *
0 :[(zzixi) W(zzixi ﬂ (zlixi)w(zliyi),

which is the standard linear GMM estimator when applied to the pseudo-observations.
Thisisidentical to the procedure in nonlinear least squares estimation.

The solution of the non-linear estimation problem, 0, is a fixed point in the Gauss-
Newton iterations. Evaluated at the expansion point, i.e. with 6 =0, , the moment func-

tion g,(0) and its gradient G, (0) are equal to their respective linearised counterparts
gn(e‘éj) and én(e‘éj). Therefore, given that 0 satisfies the first order condition for

the nonlinear problem, it will also fulfil the first order conditions for the corresponding
linearised problem, if 0 is chosen at the expansion point. The residuals of the Gauss-
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Newton estimates are identical to the residuals of the original nonlinear problem at the
point of convergence. For 0, =0, the Gauss-Newton residuas are

VX0, 1 (x,8) + o (3, 8) 0o (x,8) =y~ f (x,6).

Similarly, the covariance matrix of 0 can be computed as the covariance matrix of the
Gauss-Newton estimation at the point of convergence. This follows directly from com-
paring the asymptotic covariance of nonlinear GMM estimation with its linearised

counterparts. In fact, the asymptotic covariance is computed using the very same lin-
earisation of g, (0) that also defines the Gauss-Newton regression above, see Hayashi

(2000), Section 7.3.

The Gauss-Newton procedure is a gradient method. We can write:
0 =6,+[G, () Wa,(8)] [-G,(6)We,(6,)].

The second expression in brackets is the gradient of the objective function Q,(9),
evaluated at 0 ; - Itismultiplied by the inverse of a quadratic form in the gradient of the

moment function. This latter expression takes the role of the negative inverted Hessian

in the Newton-Raphson algorithm. This matrix will be positive definite in the
neighbourhood of @, provided that E(G,(8,)) has full column rank and the number

of observations is large. Thus, if sis chosen small enough, the value of the objective
function will increase each iteration.
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