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Abstract: 

Understanding adjustment processes has become central in economics. Empirical analy-
sis is fraught with the problem that the target is usually unobserved. This paper devel-
ops, simulates and applies GMM methods for estimating dynamic adjustment models in 
a panel data context with partially unobserved targets and endogenous, time-varying 
persistence. In this setup, the standard first difference GMM procedure fails. I propose 
three estimation strategies. One is based on quasi-differencing, and it leads to two dif-
ferent, but related sets of moment conditions. The second is characterised by a state-
dependent filter, while the third is an adaptation of the GMM level estimator. 

Keywords: Dynamic panel data models, economic adjustment 

JEL-Classification: C23, C15, D21 
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Chapter 3 – Panel estimation of state dependent adjustment 
when the target is unobserved 

1 Introduction 

New Keynesian economics, with its emphasis on real and financial frictions, has intro-

duced a focus on microeconomic adjustment dynamics into the empirical literature. 

Adjustment dynamics are essential for understanding aggregate behaviour and its sensi-

tivity towards shocks. Important examples range from price adjustment and its signifi-

cance for the New Keynesian Phillips curve (Woodford 2004), over plant level adjust-

ment and aggregate investment dynamics (Caballero, Engel and Haltiwanger, 1995, 

Caballero and Engel 1999, Bayer 2006), to aggregate employment dynamics, building 

from microeconomic evidence (Caballero, Engel and Haltiwanger 1997). In these stud-

ies, as in Chapter 2, the adjustment dynamics itself becomes the principal object of 

analysis, instead of being treated as an important, but burdensome obstacle to under-

standing equilibrium phenomena.  

In a rather general form, economic adjustment can be framed by a "gap equation", as 

formalised by Caballero, Engel and Haltiwanger (1995): 

  ( ), , , ,,i t i t i t i ty g gΔ = Λ ⋅x , where  *
, , 1 ,i t i t i tg y y−= − . 

Here, subscripts refer to individual i at time t, and ,i tg  is the gap between the state , 1i ty −  

inherited from the last period and the target *
,i ty  that would be realised if adjustment 

costs were zero for one period of time. The speed of adjustment, written as a function Λ  

of the gap itself and additional state variables ,i tx , determines the fraction of the gap 

that is removed within one period of time. The adjustment function will reflect convex 

or non-convex adjustment costs, irreversibility and indivisibilities, financing constraints 

or other restrictions, and the uncertainty of expectation formation. With quadratic ad-

justment costs or Calvo-type probabilistic adjustment, Λ  will be a constant. 

Estimating the function Λ  is inherently difficult. In general, both *
,i ty  and ,i tg  will be 

not observable. But some measure of the gap is needed for any estimation, and if Λ  

explicitly depends on ,i tg , this measure will move to the centre stage. In order to ad-
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dress this issue, one may first try to do the utmost to observe the target as exactly as 

possible. The meticulous measurement work of Bayer (2004) and the controversy be-

tween Caballero and Engel (2004) and Cooper and Willis (2004) on interpreting the 

results of gap equation estimates bear testimony to the problems that may result from 

imperfect measures of the gap.  

There is a second route. In linear dynamic panel estimation, the problem can success-

fully been addressed by positing an error component structure for the measurement error 

and eliminating the individual fixed effect by a suitable transformation, such as first 

differencing. See Bond et al. (2003) and Bond and Lombardi (2007) for an error correc-

tion model of capital stock adjustment. The GMM estimator developed by Arellano and 

Bond (1991) accounts for the presence of lagged endogenous variables, the endogeneity 

of other explanatory variables, and unobserved individual specific effects. Individual 

effects (including a possible measurement error in the target) are differenced out. En-

dogenous explanatory variables can be instrumented using lagged dependent variables if 

the memory of the error process is limited. Time fixed effects can also be accommo-

dated; the remaining idiosyncratic component of the measurement error needs to be un-

correlated with the instruments.  

In the unrestricted, non-linear case, this approach is not feasible, as a host of incidental 

parameters will preclude identification. But there may be direct qualitative information 

on the level of ( )Λ , e.g. from survey data, ratings or market information services. If 

one is willing to treat the adjustment process as piecewise linear, distinguishing regimes 

of adjustment, then, as will be shown, this information can be harnessed to eliminate the 

incidental parameters from the problem completely.  

Linear dynamic panel estimation was pioneered by Anderson and Hsiao (1982) and it 

was developed and perfected by Holtz-Eakin, Newey and Rosen (1988), Arellano and 

Bond (1991), Arellano and Bover (1995) and Blundell and Bond (1998). This paper 

shows how these methods can be adapted for the analysis of economic adjustment if the 

target is (partially) unobserved and the non-linearity takes the form of discrete regimes. 

This is not straightforward, as the unknown and time varying adjustment coefficient 

interacts with the equally unknown individual specific measurement error. But the re-
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ward is substantial: the well-known array of procedures and tests can be brought to bear 

on the investigation of economic adjustment. 

Section 2 of this paper characterises the stochastic process to be estimated. A continu-

ous scalar and a discrete regime vector are evolving jointly, and the adjustment of the 

continuous-type variable depends on the regime. It is shown that the standard procedure 

for estimating linear dynamic panel models is not applicable. Section 3 proposes two 

estimators on the basis of quasi-differencing, one of them with the virtue of great sim-

plicity, the other being more efficient. Both of them are non-linear, which may lead to a 

small sample bias if in one of the regimes the adjustment speed is almost zero. Section 4 

works out two linear GMM estimators that are immune to this problem. One of them 

uses state dependent filtering, the other is a level estimator applied to a modified model 

equation. The latter can also cope with contemporaneously correlated regimes. Section 

5 tests and compares the proposed routines in a Monte Carlo study. 

2 A regime-specific adjustment process 

I examine a situation where a variable ,i ty  reverts to some target level *
,i ty  characteristic 

of individual i. The speed of adjustment depends on the value of ,i tr . This is an L-

dimensional column vector of regime indicator variables, with one element taking a 

value of 1, and all others being zero. The equation is 

  ( )( )*
, , 1 , 1 , ,1i t i t i t i t i ty y yα ε− −Δ = − − − +    (1) 

with  

  , ,'i t i tα = α r . 

The target level *
,i ty  is unobservable. It follows an equation that contains an individual-

specific latent term:  

  * '
, ,i t i t iy μ= +x β . 

The idiosyncratic component iμ  in the adjustment equation may reflect a measurement 

error or unobserved explanatory variables. The vector ,i tx  may encompass random 

explanatory variables, deterministic time trends and also time dummies. In its absence, 
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the target level is entirely unobservable, but static. The vector α  holds the state depend-

ent adjustment coefficients. The adjustment coefficient ,i tα  varies over time and 

individuals, and ( ), 11 i tα −−  is the adjustment speed at date t. If the process is stable, it 

would eventually settle in the target in the absence of shocks. We will start by assuming 

the error term to be a martingale difference sequence:  

  ( ), , 1E 0i t i tε −Ω = , with    (2) 

  { }, 1 , 1 , 2 , 1 , 2 , 1 , 2, 0, , , , , , , , ,i t i t i t i t i t i t i t i iyε ε μ− − − − − − −Ω = r r x x… … … .  

Accommodation to the more general assumption ( ), ,E 0, 1i t i t k kε −Ω = ≥ , with 

  { }, , 1 , 2 , , 1 , , 1, 0, , , , , , , , ,i t k i t i t i t k i t k i t k i t k i iyε ε μ− − − − − − − − −Ω = r r x x… … … , 

is straightforward in every case that will be discussed. Note, however, that this generali-

sation maintains the assumption of predetermined regime indicators. The case of en-

dogenous regime indicators will be treated separately in Subsection 4.3. 

The regime variable ,i tr  is generated by a threshold process:  

  ( ), 1 ,( ) Indi t k i t kk c s c−= ≤ ≤r .    (3) 

The unobserved state variable ,i ts  may, for example, be an autoregressive process or a 

moving average process of order q. Generally, there will be a non-zero covariance be-

tween the error term and the regime indicators, ( ), ,cov , 0i t i tε ≠r . If, for example, ,i tε  is 

the error term in a capital accumulation equation and ,i tr  is the regime indicating the 

degree of financing constraints, there should be a contemporaneous correlation between 

those two.  

As we do not observe the target, we have no direct information on the position of the 

individual relative to the target. But the panel dimension can help us to identify the ad-

justment process nonetheless, as it allows us to use an error component approach for 

modelling the unobserved target. In the adjustment equation, both the individual effect 
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and ,i tx  are interacted with a time varying and endogenous variable. Solving for ,i ty  

yields: 

  ( ) ( )'
, , 1 , 1 , 1 , , 1 ,

latent

1 1i t i t i t i t i t i t i i ty yα α α μ ε− − − −= + − + − +x β
���	��


.  (4) 

For later purposes it is useful to work out the backward solution to this stochastic differ-

ence equation. For 1t ≥  and a given starting value ,0iy  it is:  

  
1

'
, ,0 ,1 , , ,

0

'
t

i t i i i i k i t i i t
k

y y Aβ μ α μ
−

=

⎡ ⎤= − − + + +⎣ ⎦∏x x β ,  (5) 

with  

  ( )
11

'
, , , 1 , ,

1

tt

i t i l i l i k i t
l k l

A ε α ε
−−

+
= =

= − Δ +∑ ∏x β .   (6) 

The solution has three components. The first term captures the influence of the initial 

deviation. The second term is the target level at time t, '
,i t iμ+x β . The third term, ,i tA , 

represents the effect of shocks and target variations, past and present. In the long run, 

when the influence of the initial conditions has died out, ,i tA  is equal to the deviation 

from the target. 

Anderson and Hsiao (1982) have devised the classic strategy for estimating linear dy-

namic panel equations with fixed effects. Consider a first-order autoregressive equation:  

  . , 1 ,i t i t i i ty yγ μ ε−= + + . 

Obviously, the latent fixed effect iμ  is correlated with the explanatory variable. Trans-

forming the equation by taking first differences eliminates the fixed effect:  

  . , 1 ,i t i t i ty yγ ε−Δ = Δ + Δ . 

Now the transformed error term ,i tεΔ  is correlated with the transformed regressor, 

, 1i ty −Δ . This can be accommodated using an instrument variable procedure. Anderson 

and Hsiao propose using either lagged first differences or lagged levels as instruments. 

Employing second and further lags of the level as instruments for the differenced equa-

tion makes use of the following moment restrictions: 
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  ( ), ,E 0, 2,3,i t s i ty sε− ⋅Δ = = …  

If these moment restrictions hold, then the lagged levels will be valid instruments, be-

cause they are correlated with the regressor variable. The suggestion of Anderson and 

Hsiao was refined by Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond 

(1991), who propose to use an efficient GMM estimator that uses all available moment 

restrictions optimally, instead of the IV or 2SLS method. Formally, the moment equa-

tions are written as a system, in order to be able to use a varying number of instruments 

according to availability. The instruments are weighted optimally using the Hansen 

(1982) two-stage procedure. 

In order to investigate the feasibility of the standard approach in the context of the 

model with time-varying coefficients, we look at the first difference of equation (2), 

also focussing on the simple case of a static target: 

  ( ) ( ) ( ), , 1 , 1 , 1 ,

latent process

' 'i t i t i t i t i i ty y μ ε− − −Δ = Δ + − Δ + Δα r 1 α r
�����	����


.  (7) 

Unlike the linear case, the expression containing the unobserved iμ  is not differenced 

out, and we have to deal with a time-varying error component that is correlated with the 

explanatory variables. Instruments that are uncorrelated with this latent process, but 

correlated with the explanatory variables in such a way that each of the coefficients is 

identified are hard to come by. The following sections are devoted to finding moment 

conditions that make estimation feasible in practice. 

3 Two non-linear moment conditions based on quasi-differencing 

This section discusses two nonlinear transformations of the adjustment equation that 

eliminate the unobserved heterogeneity. Holtz-Eakin, Newey and Rosen (1988) pro-

posed quasi-differencing as a strategy in a case where fixed effects are subject to time 

varying shocks that are common across individuals.1 We explore whether this method 

can be generalised to the more complicated case at hand, where coefficients are endoge-

nous and vary over time and individuals.  

                                                 
1  See also Chamberlain (1983), p. 1263-64. I thank Olympia Bover for reminding me of this 'classical' 

strategy. 
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Literally, the quasi-differencing procedure as proposed by these authors involves lag-

ging equation (1), multiplying both sides by , 1

, 2

1
1

i t

i t

α
α

−

−

−
−

 and subtracting the result from 

equation (1). After reordering coefficients, this gives: 

  ( ), 1 , 1'
, , 2 , 1 , 1 , , , 1

, 2 , 2

1 1
1

1 1
i t i t

i t i t i t i t i t i t i t
i t i t

y y
α α

α α ε ε
α α

− −
− − − −

− −

− −
Δ − Δ − − Δ = −

− −
x β . (8) 

The unobserved heterogeneity has duly been eliminated, but this equation is difficult to 

deal with, because in general , 1i tα −  is correlated with , 1i tε −  and , 2i tα − . The underlying 

idea nonetheless leads to useful moment conditions, actually in two different ways. 

First, dividing equation (8) by ( ), 11 i tα −−  gives 

  , 2 '
, , 1 , ,

, 1 , 2

1
1 1

i t
i t i t i t i t

i t i t

y y
α

ψ
α α

−
−

− −

Δ − Δ − Δ =
− −

x β ,   (9) 

with 

  , , 1
,

, 1 , 21 1
i t i t

i t
i t i t

ε ε
ψ

α α
−

− −

= −
− −

.    (10) 

This transformation – which shall be referred to as "QD1" − corresponds to solving 

equation (1) for the expression '
, 1 ,i t i t iy μ− − −x β , then solving the lagged version of (1) 

for '
, 2 , 1i t i t iy μ− −− −x β  and ultimately differencing iμ  out. Second, we may multiply 

equation (9) by , 21 i tα −− , to obtain: 

  ( ), 2 '
, , 2 , 1 , 2 , ,

, 1

1
1

1
i t

i t i t i t i t i t i t
i t

y y
α

α α ξ
α

−
− − −

−

−
Δ − Δ − − Δ =

−
x β ,  (11) 

with 

  , 2
, , , 1

, 1

1
1

i t
i t i t i t

i t

α
ξ ε ε

α
−

−
−

−
= −

−
.    (12) 

This transformation shall be labelled "QD2". It corresponds to multiplying equation (1) 

by ( ) ( ), 2 , 11 1i t i tα α− −− −  and subtracting the lag of the original adjustment equation.  
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Proposition 1: Under assumption (2), the levels ,i t py − , ,i t p−x  and the regime indicators 

,i t p−r , 2p ≥ , are instruments in equations (9) and (11), that is: 

  ( ) ( ), , , ,E E 0  i t p i t i t p i ty yψ ξ− −= = , 

  ( ) ( ), , , ,E E 0  i t p i t i t p i tψ ξ− −= =x x , 

  ( ) ( ), , , ,E Ei t p i t i t p i tψ ξ− −= =r r 0 . 

Proof: If ( ), , 1E 0i t i tε −Ω = , with , 1i t−Ω  some information set that varies over individuals 

and time, then any function ( ), 1i tf −Ω  will be orthogonal to ,i tε , because 

  ( ) ( ) ( ) ( ), 1 , , , , 1 , 1 , , 1E E E E 0i t i t i t i t i t i t i t i tf f fε ε ε− − − −
⎡ ⎤⎡ ⎤⎡ ⎤Ω = Ω Ω = Ω Ω =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (13) 

Consider first ( ), ,E i t p i ty ψ− , with 2p ≥ . By iterating equation (1), ,i t py −  is a function of 

( ), 1 , 2 , , 1 , , 1 ,0, , , , , , , , ,i t p i t p i t p i t p i t p i t p i iyε ε μ− − − − − − − − − −r r x x… … … . The expressions 
, 1

1
1 i tα −−

 and 

, 2

1
1 i tα −−

 are functions of , 1i t−r  and , 2i t−r . Applying (13) to the products ,
,

, 11
i t p

i t
i t

y
ε

α
−

−−
 and 

,
, 1

, 21
i t p

i t
i t

y
ε

α
−

−
−−

 yields ( ), ,E 0i t p i ty ψ− = . The other orthogonalities follow likewise.  

If assumption (2) is replaced by ( ), ,E 0i t i t kε −Ω = , then the set of valid instruments is 

pushed backward in time accordingly.  

To discuss estimation on the basis of the two sets of moment conditions, it is useful to 

rewrite the transformations (9) and (11) somewhat. Equation (9) has the convenient 

feature that '
,i tΔx β  enters additively. Collecting terms, we can write:  

  ,i tψ  '
, 1 , 1 ,

, 1 , 2

1 1
1 1i t i t i t i t

i t i t

y y y
α α− − −

− −

⎛ ⎞
= Δ + Δ − Δ − Δ⎜ ⎟⎜ ⎟− −⎝ ⎠

x β  

   ( ) '
, 1 , 1 , ,'i t i t i t i ty y− −= Δ + Δ Δ − Δγ r x β   

   ( ) '
, 1 , 1 , ,'i t i t i t i ty y− −= Δ + Δ Δ − Δγ r x β ,   (14) 
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with 

  
1

1 1'
1 1 Lα α
⎛ ⎞

= ⎜ ⎟− −⎝ ⎠
γ … .    (15) 

Equation (14) is linear in the coefficient vectors γ  and β , and can be estimated by lin-

ear GMM using the moment conditions of Proposition 1. It relates the structural coeffi-

cients α  to the elements of γ  by a nonlinear one-to-one transformation, see equation 

(15). Inverting this transformation therefore gives a nonlinear GMM estimator of α . 

Standard deviations and covariances can be assessed using the delta method.  

Putting QD2 to use for GMM estimation is trickier. Let ( ), 2 , 1,i t i t− −d r r  be an 2 1L ×  

indicator vector, where each element is a dummy variable indicating one of the possible 

switches from , 2i t−r  to , 1i t−r . Let λ  be the vector of coefficients ( ) ( ), 2 , 11 1i t i tα α− −− −  

corresponding to the elements of ( )⋅d : 

  1 1

2 3 2 1

1 1 1 1' 1 1
1 1 1 1

L L

L L

α α α α
α α α α− −

⎛ ⎞− − − −= ⎜ ⎟− − − −⎝ ⎠
λ … … . 

Let furthermore δ  be a vector of products of the adjustment coefficients, ( )−1 α , and 

β : 

  ( )

( )
( )

( )

1

2

1
1

1 L

α
α

α

−⎛ ⎞
⎜ ⎟−⎜ ⎟= − ⊗ = ⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

β
β

δ 1 α β

β
#

. 

Finally, let  

  ( ),
⎛ ⎞
⎜ ⎟= − =⎜ ⎟
⎜ ⎟−⎝ ⎠

λ
π α h α β

δ
    (16) 

be an ( )1 1L L K+ + ×  vector of reduced form coefficients, of which ( )L L K+  are un-

known. Then we can write: 
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  ,i tξ  ( ), 2 , 1 , , 2 , 1 , 2 ,' , ' 'i t i t i t i t i t i t i ty y− − − − −= Δ − Δ − Δλ d r r α r δ r x   

   ( ) ' '
, 2 , 1 , , 1 , 1 , 1 ,, 'i t i t i t i t i t i t i ty y− − − − −⎡ ⎤= Δ Δ Δ⎣ ⎦d r r r r x π . 

As with QD1, this equation is non-linear in the structural parameters α  and β , and lin-

ear in a transformed coefficient vector. However, here there is no convenient one-to-one 

transformation from π  to the structural parameter. The nonlinearity of the problem 

therefore has to be treated explicitly. Consider the simplest case, with two states and no 

explanatory variables ,i tx . Then λ  and α  have two elements each and we can write: 

  ( ) 1 2
1 2

2 1

1 1' ' 1 1
1 1

α α α α
α α

⎛ ⎞− −= = − −⎜ ⎟− −⎝ ⎠
π h α . 

In principle, there are two ways of estimating the structural parameters. First, we may 

estimate the coefficients π  together with the covariance matrix, and then go to the 

structural parameters using (16). As the reduced form has more parameters than the 

structural equation, the structural parameters are over-determined. The information can 

be aggregated efficiently using the classical minimum distance (CMD) estimator. Sec-

ond, we may treat the transformed equation directly as a nonlinear estimation problem 

in the structural parameters. These alternatives shall be discussed in turn. 

Let ( )0 0 ' '=θ α β  be the true vector of structural coefficients and ( )0 0=π h θ  be the 

true vector of reduced form coefficients. We assume that there is a consistent and as-

ymptotically normal estimator ˆ Nπ  of 0π , with ( )0 0ˆAvar NN − =π π Ξ . The vector ˆ Nπ  

could, for example, be a GMM estimate of the reduced form equation. Any hypothetical 

value θ  of the structural coefficients implies a vector of reduced form coefficients 

( )h θ . The CMD estimator determines θ̂  in such a way that the weighted deviations of 

( )ˆh θ  from their counterparts π̂  resulting from the unconstrained estimation is mini-

mised. 2 That is, θ̂  is to solve: 

  ( )( ) ( )( )ˆ
ˆ ˆˆ ˆmin '− −

θ
π h θ Ω π h θ , 

                                                 
2  See Wooldridge (2001) and Newey and McFadden (1994) for a discussion of CMD estimation. 
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with Ω  a possibly data dependent positive definite weighting matrix. Under these as-

sumptions, the CMD estimator is consistent and asymptotically normal.  

A weighting matrix is efficient if it leads to a CMD estimator with a "smaller" variance 

than what could be obtained from any other weighting matrix, in the sense that the dif-

ference between their asymptotic covariance matrices is positive semi-definite. It can be 

shown that an efficient weighting matrix is given by 1ˆ −=Ω Ξ , with Ξ̂  any matrix such 

that 0
ˆplim

N →∞
=Ξ Ξ , provided that 0Ξ  has full rank. Therefore, the inverse of any consis-

tent estimator of ( )ˆAvar NN −π π  is an efficient weighting matrix. Let ( )H θ  be the 

2L L×  matrix of partial derivatives of ( )h θ : 

  ( ) ( ) ( ) ( )
1

, ,
L Kθ θ +

∂ ∂⎛ ⎞
= ∇ = ⎜ ⎟∂ ∂⎝ ⎠

θ

h θ h θ
H θ h θ … . 

The i'th column of ( )H θ  is the derivative of ( )h θ  with respect to iθ . Using an efficient 

weighting matrix leads to: 

  ( ) ( ) ( )( )11
0 0 0 0

ˆ N 0, '
d

N
−−⎡ ⎤− → Ξ⎣ ⎦θ θ H θ H θ . 

The appropriate estimator for the covariance matrix of θ̂  then is: 

  ( ) ( ) ( ) ( ) ( )( ) ( ) 11 11ˆ ˆ ˆ ˆ ˆˆ ˆEst var ' ' Est varN
−− −− ⎡ ⎤⎡ ⎤= Ξ =⎣ ⎦ ⎣ ⎦

θ H θ H θ H θ π H θ . 

Linear restrictions, such as the equality of coefficients, can be subjected to a standard 

Wald-test. Alternatively, a criterion function test statistic is available.3 

There is a drawback to the CMD procedure in the given context. For asymptotic effi-

ciency we need the matrix 0
ˆplim

N →∞
=Ξ Ξ  to be of full rank, such that the inverse matrix 

can be formed. If the reduced form is to be estimated by linear GMM, this requires that 

each of the reduced form parameters is separately identified by the moment conditions. 

This will not always be possible. As we have seen, π  represents four reduced form pa-

rameters in the case of two states and no explanatory variables. With three states, it is 

already nine parameters. Each explanatory variable adds L parameters to the reduced 
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form coefficients vector. In practice, the information content of the available instru-

ments may not be sufficient to identify all of the many reduced form parameters sepa-

rately. And although CMD estimation can be performed on the basis of any positive 

definite matrix, the weighting matrix 1ˆ −=Ω Ξ  for efficient CMD would then cease to 

exist in the limit.  

Therefore we may prefer to estimate directly in terms of the underlying structural pa-

rameters: 

  ( ) ( )' '
, , 2 , 1 , , 1 , 1 , 1 ,, 'i t i t i t i t i t i t i t i ty yξ − − − − −⎡ ⎤= Δ Δ Δ ⋅⎣ ⎦d r r r r x h α β   (17) 

Though nonlinear in the parameters, this equation is linear in the transformed variables. 

This makes it easy to use the Gauss-Newton method for solving the optimisation prob-

lem inherent in GMM estimation, using routines for linear GMM in performing the it-

eration steps. Appendix B elaborates on the Gauss-Newton method in the context of 

non-linear GMM problems. As initial values for iteration, we can either use CMD esti-

mates or the results from nonlinear indirect estimation exposed earlier in this section. 

The transformations QD1 and QD2 are nonlinear, and the stochastic properties of the 

transformed residuals depend on the adjustment parameters. Consider the transformed 

residuals , , 1
,

, 1 , 21 1
i t i t

i t
i t i t

ε ε
ψ

α α
−

− −

= −
− −

 on the one hand and , 2
, , , 1

, 1

1
1

i t
i t i t i t

i t

α
ξ ε ε

α
−

−
−

−
= −

−
 on the 

other. The variance of ,i tψ  will become large if one or both alpha-coefficients are in the 

neighbourhood of 1, creating problems in small samples. An adjustment coefficient ap-

proaching 1 will affect ,i tξ  to a lesser degree. First, only one of the two components of 

the difference is affected. Second, the effect is mitigated by the denominator, , 21 i tα −− . 

The random factor ( ) ( ), 2 , 11 1i t i tα α− −− −  in ,i tξ  can take three values, of which only one 

is larger than 1. Indeed, if the alpha coefficients are of similar size, the random factor 

will stay in the neighbourhood of 1. Therefore, when the alpha coefficients are high (i.e. 

adjustment speed is low), efficiency gains can be expected from using QD2. I will in-

vestigate this in a simulation study below. 

                                                                                                                                               
3  For this test, and a criterion function specification test, see Wooldridge (2002). 
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4 Two moment conditions based on linear transformations 

4.1  Forward differences and generalised differences 
Being nonlinear, the transformation we just investigated may lead to poor results if in 

one or more of the regimes the adjustment speed is very low. They cannot be used at all 

if one of the regimes is characterised by an adjustment speed of exactly zero. This is a 

case of considerable theoretical interest, as the presence of fixed adjustment costs or 

irreversibility leads to bands around the target where no adjustment takes place – the 

solution to the stochastic control problem triggers adjustment when some threshold 

level is surpassed. In a literal sense, this sort of behaviour is to be expected only when 

decisions on single projects are considered, as opposed to entire firms or sectors. But it 

is certainly useful to explicitly consider regimes of no adjustment, as have done parts of 

the literature, eg. Caballero, Engel and Haltiwanger (1995) 

To this end, it may be worth asking whether there is a linear transformation that could 

be brought to bear on the problem at hand, in the spirit of the first differencing proce-

dure. As we shall see, there is such a transformation if the regime indicator has limited 

memory with respect to ,i tε . We start by looking again at the first difference of ,i ty : 

  ( ) ( ) ( ) ( ) ( )'
, , 1 , 1 , 1 , , 1 ,' ' 'i t i t i t i t i t i t i i ty y μ ε− − − −Δ = Δ + − Δ + − Δ + Δα r 1 α r x β 1 α r . 

For unchanging adjustment regimes, , 1 , 2i t i t− −=r r , this simplifies to  

  ( ) '
, , 1 , 1 , 1 , ,' 'i t i t i t i t i t i ty y ε− − −Δ = Δ + − Δ + Δα r 1 α r x β . 

This expression looks very much like the first difference in the linear case, although 

there is more than one adjustment coefficient to estimate. Taking first differences of 

observations that belong to different regimes leads to a latent term ( ) , 1' i t iμ−− Δ1 α r  that 

will be correlated with the lagged dependent variable under a variety of circumstances. 

As it is this term that makes the use of the standard technique difficult, the following 

strategy comes to mind: Differences are only formed for observations with , 2 , 1i t i t− −=r r . 

On the basis of cases where two consecutive observations belong to the first regime, we 

could estimate 1a , and using differences of observations that both belong to the second 

regime, we could infer on 2a , etc. In this straight fashion, however, the idea will not 
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work. The transformed residual ,i tεΔ  has an expectation different from zero in the two 

groups of observations. This is because , 1i t−r  and , 1i tε −  are correlated by assumption. The 

expectation ( )( ), 1 , 1
E 1 1i t i t

ε − −
=r  is not equal to zero, and neither is ( )( ), 1 , 1

E 2 1i t i t
ε − −

=r . 

Selecting residuals according to regimes will lead to biased estimators.  

If ,i tε  is uncorrelated with past regime indicators, , 1 , 2, ,i t i t− −r r … , then we are able to use a 

modified differencing approach. Autocorrelation of ,i tε  is permitted if the usual require-

ment of limited memory is satisfied. The following two principles will generate moment 

conditions involving the use of lagged endogenous variables as instruments:  

1. Let q  be the maximum τ  for which there is a correlation between ,i tr  and ,i t τε − , 

eg. as a consequence of an MA structure of the state driving the regime indicator 

as exemplified in Assumption 2. Then the observation is to be transformed sub-

tracting past observations of the same regime with a lag of at least 2s q= + .  

2. If an observation is not matched by a 2 q+ -lag in the same regime, it may be 

transformed using any other lag 2s q> + . 

The second principle avoids the loss of many observations in cases where regimes in t 

and t+q do not match because of regime switches. What I propose here is a dynamic 

filter, which varies according to regimes.  

Similar to (7) we obtain for the s'th difference: 

  ( ) ( ) ( )( ) ( ), , , 1 , 1 , 1 , 1 , 1 , 1 , ,' 1 'i t i t s i t i t i t s i t s i t i t s i i t i t sy y y y μ ε ε− − − − − − − − − − −− = − + − − + −α r r α r r , 

which simplifies to  

  ( ) ( ) ( ), , , 1 , 1 , 1 , ,'i t i t s i t i t i t s i t i t sy y y y ε ε− − − − − −− = − + −α r , 

if the two observations are characterised by the same regime, such that , 1 , 1i t i t s− − −=r r . 

When does the conditional expectation of the residual term, ( ), ,i t i t sε ε −− , become zero? 

It is sufficient that ,i tε  and ,i t sε −  are both uncorrelated with the conditioning variables, 

which are , 1i t−r  and , 1i t s− −r . Now assume ,i tε  to be uncorrelated with , 1i t−r  and , 1i t s− −r . 
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Then the same is true with respect to ,i t sε −  and , 1i t s− −r . Therefore, by choosing s, we 

have only to make sure that ,i t sε −  and , 1i t−r  are uncorrelated. This will never happen with 

1s = , as we have seen before. However, if ,i tr  is uncorrelated with all lags of ,i tε , then 

2s =  will ensure that 

  ( ), , , 1 , 1E 0i t i t s i t i t sε ε − − − −− = =r r ,    (18) 

regardless of whatever value , 1i t−r  and , 1i t s− −r  take. More generally, if there is correlation 

between ,i tr  and ,i t τε −  up to lag qτ = , the difference that guarantees the above equation 

to hold will be at least of order 2s q= + . GMM estimation on the basis of this 

transformation may be called forward difference estimation. But we are not restricted to 

using only differences of the order that is "just right", i.e. 2 q+ . Any other difference of 

order 2s q≥ +  will fulfil eq. (18) just as well. Therefore I construct the difference using 

the most proximate observation of the same regime with lag 2s q≥ + . With respect to 

admissibility and validity of instruments, the rules of the classic approach apply: the 

instruments need to be uncorrelated with the earlier of the two observations that make 

up the difference. In the following, this procedure will be called the generalised differ-

ence estimator. 

To state the moment condition, I have to strengthen assumption (2). In addition to the 

variables in the conditioning set , 1i t−Ω , ,i tε  must also be uncorrelated to the future re-

gimes , 1 , 2, ,i t q i t q+ + + +r r … .  
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Proposition 2: Let the conditional expectation of ,i tε  satisfy 

  ( ), , 1 , 1 , 2,E , , 0i t i t i t q i t qε − + + + +Ω =r r … .   (19) 

with , 1i t−Ω  defined as in (2). Then the levels ,i t s py − − , 1p ≥  are valid instruments for the 

equations transformed by taking the s 'th difference, with 2s q≥ + :  

  ( )( ), , , , 1 , 1E 0i t i t s i t s p i t i t syε ε − − − − − −− = =r r .   (20) 

Proof: The proposition follows from the law of iterated expectations:  

  ( )( ), , , , 1 , 1E ,i t s p i t i t s i t i t sy ε ε− − − − − −− r r    

  ( )( )( ), , , , , 1 , 1 ,E E , ,
i t s py i t s p i t i t s i t i t s i t s py yε ε

− − − − − − − − − −= − r r   

  ( )( ), , , , , 1 , 1 ,E E , ,
i t s py i t s p i t i t s i t i t s i t s py yε ε

− − − − − − − − − −= ⋅ − r r  0= , 

because the conditional expectation within the brackets is zero for 2s q≥ + . The back-

ward solution (3) and (4) decomposes ,i ty  into ,0iy , iμ , and the history of ,i tε  and ,i tr . 

Condition (19) ensures that the expected values of ,i tε  and ,i t sε −  do not depend on the 

components of ,i t s py − − . The additional conditioning on ,i t s py − −  can have no influence on 

the expected value.  

As in the case of the two nonlinear estimators, , 1i t−r  must be uncorrelated with the cur-

rent error term. The generalised difference approach cannot work if the regime indicator 

is contemporaneous with respect to the current error term. Furthermore, it is an identi-

fying assumption for the process that drives the regime indicator to have finite memory 

with respect to innovations ,i tε . This is a limitation of the approach. If ,i tr  were corre-

lated with all past values of ,i tε , the conditional expectation of the transformed error 

term resulting from a difference of two observations from the same regime would not 

disappear. The resulting bias can be expected to wane if the minimum lag length is cho-

sen to be large. But doing so would result in losing many observations, exacerbating 

another weakness of the estimation strategy.  
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4.2. Testing the validity of the length of memory 
In order to use generalised differencing, we need to decide on the length of the memory 

of the process driving the regime with respect to ,i tε . This is difficult to do on an a pri-

ori basis. There are two simple solutions. The first is to use the Sargan-Hansen test to 

check the appropriateness of the transformation. This is straightforward, as the Sargan-

Hansen test is a test of the validity of the moment conditions. The drawback is that the 

Sargan-Hansen test is generally used as an omnibus test of the specification, including 

the choice of the instruments. If we employ the Sargan-Hansen test as a means of find-

ing the correct lag length, then estimation will be conditional on the test statistic being 

insignificant. For further purposes, the test is spent.  

Alternatively, we may base a test on the fact that the expected value of the residual will 

not disappear if the lag length chosen is too short. In that case, as we have seen, the 

choice of observations belonging to one regime or the other will select positive or nega-

tive outcomes of ,i tε , because of the correlation between the regime variable and the 

error component ,i tε . If we enter regime dummies into our specification, they will be 

estimated as positive or negative quantities according to the direction of selectivity, al-

though they should be zero according to the basic specification. Furthermore, we know 

how these estimates for regime constants are distributed under the null of a correct 

specification. Using a GMM estimator, they are asymptotically normal, with mean zero, 

and their standard deviation is given by the standard deviation of the coefficient. There-

fore, the t-value on these coefficients is a valid test statistic.  

It may be argued that this test ignores the possibility that the regime-specific constants 

truly belong into the equation. Consider a trend in the term in the brackets of equation 

(1) that makes the target level of ,i ty  change over time: 

  ( )( ), , 1 , 1 ,1i t i t i t i i ty y tα κ μ ε− −Δ = − − − − + . 

Solving for ,i ty , we get: 

  ( ) ( ), , 1 , 1 , 1 , 1 ,1 1i t i t i t i t i t i i ty y tα α κ α μ ε− − − −= + − + − + . 

After transforming the equation by subtracting an observation belonging into the same 

regime, lagged λ  periods, we have 
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  ( ) ( ) ( ), , , 1 , 1 , 1 , 1 , ,1i t i t i t i t i t i t i t i ty y y yλ λ λα α κλ ε ε− − − − − − −− = − + − + − . 

Regime-specific constants may thus be the result of a trending target variable. However, 

in this case they should be proportional to each other, with a factor of proportionality 

given by 1 minus the regime-specific coefficient on the lagged dependent variable. Us-

ing the delta method to test this restriction is relatively straightforward. More generally, 

they should not be of different sign, as it will be the case if the coefficient on the regime 

dummy collects the residuals selected for their high or low value.  

4.3. Moment restrictions for the equation in levels 
Both estimation methods discussed above – the two moment conditions for quasi-differ-

ences as well as the generalised differences approach – require the regime variable to be 

predetermined with respect to the current shock term. This may hold in many cases, 

specifically if there are long planning and gestation lags as in investment decisions. In 

other circumstances, the error term in the adjustment equation and the threshold variable 

governing the adjustment regime may be contemporaneously correlated. I will inves-

tigate an approach that can be brought to bear in this case. For greater clarity, the ad-

justment equation shall be rewritten as follows: 

  ( )( )'
, , , 1 , ,1i t i t i t i t i i ty yα μ ε−Δ = − − − − +x β ,   (21) 

or   ( )( )'
, , , 1 , , ,1i t i t i t i t i t i i ty yα α μ ε−= + − + +x β .   (22) 

The dating of the adjustment coefficient has been changed, to highlight the possibility 

of a contemporaneous correlation between the speed of adjustment and ,i tε .  

It turns out that this structure can be accessed by means of level estimation, relying on a 

type of moment condition that was introduced by Arellano and Bover (1995) and Blun-

dell and Bond (1998) as a response to a specific problem arising in the standard autore-

gressive model. If the coefficient of the lagged dependent variable is in the neighbour-

hood of one, the level behaves like a random walk and will be a weak instrument in the 

differenced equation. Under certain conditions, the following moment equation can be 

used in the estimation of the standard autoregressive model, as stated in Section 2 

above:  
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 ( ), ,E 0i t s i i ty μ ε−⎡ ⎤Δ + =⎣ ⎦ ,  

with 1s ≥ . If ,i tε  is serially uncorrelated, it is sufficient that ,i ty  is mean stationary and 

displays a constant correlation with iμ  for the moment equation to hold. Blundell and 

Bond (1998) have shown that this implies a requirement on the initial conditions: the 

deviation of the starting value from the stationary level needs to be uncorrelated with 

the stationary level itself. 

The latent term of equation (22) is given by ( ), ,1 i t i i tα μ ε− + . In the attempt to use first 

differences as instruments for levels, we first look at  

  ( )( )( ), , ,E 1i t s i t i i ty α μ ε−Δ − + . 

This expectation will be zero if, first, ,E 0i t sy −Δ = , and second, ,i t ky −Δ  is uncorrelated 

with both ( ), 11 i t iα μ−−  and ,i tε . The first condition requires the process to be mean 

stationary, as in the derivation of Blundell/Bond and Arellano/Bover. The second con-

dition is hard to fulfil. To see why, we adjust the backward solution to the modified 

dating: 

  ' '
, ,0 ,1 , , ,

1

t

i t i i i i k i t i i t
k

y y Aμ α μ
=

⎡ ⎤= − − + + +⎣ ⎦∏x β x β .  

Plugging this back into (21) we obtain: 

  ( )
1

' '
, , ,0 ,1 , , 1 , ,

0

1
t

i t i t i i i i k i t i t i t
k

y y Aα μ α ε
−

−
=

⎛ ⎞⎡ ⎤Δ = − − − − + − Δ +⎜ ⎟⎣ ⎦⎝ ⎠
∏x β x β . (23) 

The difference ,i t sy −Δ  is a function of all ,i kε , ,i kΔx  and ,i kα  and, k s≥ , as well as of 

the initial condition. One of the requirements for the covariance of ,i t sy −Δ  and 

( ),1 i t iα μ−  to disappear is therefore a limited memory of , ,'i t i tα = α r  with respect to its 

own past. This excludes all sorts of fixed effects in ,i tr . For the estimation problem at 

hand, a direct adaptation of the Arellano/Bover and Blundell/Bond strategy therefore 

does not look very promising.  
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We can weaken the requirements considerably by decomposing the target level, iμ , into 

its expectations over all individuals, eμ , and the individual-specific deviation *
iμ . I de-

fine: 

  *e
i iμ μ μ= + , with Ee

i iμ μ= . 

The parameter eμ  is the expected value over all individuals i, and *
iμ  is the individual 

deviation from this expectation. By definition, *E 0iμ = . Rewriting the adjustment 

equation, we arrive at: 

  ( ) ( ) ( ) ( )' *
, , , 1 , , , , ,

latent term

' - ' - ' - 'e
i t i t i t i t i t i t i i t i ty y μ μ ε−= + + + +α r 1 α r x β 1 α r 1 α r����	���
 . (24) 

This equation contains a new, regime-specific shift term ( ) ,- 'e
i tμ 1 α r . In estimation, 

this term can be taken into account by introducing the regime vector , 1i t−r  as a regressor 

into the equation. Investigating under what condition ,i t sy −Δ  is an instrument for the 

rewritten equation, we arrive at: 

Proposition 3: In order to estimate equation (24), we can make use of the moment re-

striction 

  ( )( )( )*
, , ,E 1i t s i t i i ty α μ ε−Δ − +  , s k≥ ,   (25) 

under the following two sufficient conditions: 

a)  ( )'
, , , 1, , , 1 , , 1, ,0 ,1E , , , , , , , 0i t i t k i t k i t k i t k i t k i t k i i iyε ε ε μ− − − − − − − − −Δ Δ − − =x x r r x β… … … ; 

b)   { } { } { } ( )( )* '
, , , ,0 ,1E , , , 0i i t i t i t i i iyμ ε μΔ − − =r x x β , 

where a term in curly brackets, {}⋅ , denotes an entire time series. In both parts of the 

condition, the invariance with respect to the initial value can be dispensed with if the 

process has been running "long enough" for ( ),E i ty  to have converged.  

Proof: Moment condition (25) holds if, first,  

  ( )( ), , , , ,E E E 0i t k i t i t k i t i t ky y yε ε− − −Δ = Δ ⋅ Δ = ,    (26) 
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and second, 

  ( )( )*
, ,E 1 0i t k i t iy α μ−Δ − = .    (27) 

Given the backward solution (23), condition a) is sufficient for the expectation in the 

bracket of (26) to be identically zero, as { },i t ky −Δ  is a coarser information set than 

{ }, , 1, , 1 , 2, ,0, , , ,i t k i t k i t k i t k i iyε ε μ− − − − − − − −r r… … . Similarly, we can write: 

  ( )( ) ( ) ( )( )( )* *
, , , , , ,E 1 E 1 E 1i t k i t i i t k i t i i t k i ty y yα μ α μ α− − −Δ − = Δ − ⋅ Δ − . 

Again, if, as in condition b), the expectation of *
iμ  is zero conditional on all random 

variables that may enter ,i t ky −Δ  according to its reduced form, the expectation in (27) is 

zero, too.  

It goes without saying that, if the conditions for its use are met, the moment condition 

can also be used in the case of a predetermined regime indicator. It is natural that we 

have to impose conditions on iμ , now that we leave it in the equation instead of differ-

encing it out. The invariance of expected iμ  with respect to the time path { },i tε  is quite 

unproblematic. It accords well with the basic structure of the error component model. 

The irrelevance of the regime process is less innocuous. It is well conceivable that a 

real-world data generating process for ,i tr  may contain a fixed effect that is correlated 

with iμ . This would invalidate the moment equation (25). Similar reservations apply 

with respect to the required irrelevance of { },i tΔx . Lastly, the necessity of having an 

expected value of iμ  that is independent of the initial deviation, ( ),0i iy μ−  was also 

found by Blundell and Bond (1998) when investigating the use of moment equations for 

levels in a linear context. The condition is not innocuous either: it excludes an initial 

condition such as ,0 0iy = . As already stated in the proposition, we can replace it by the 

requirement that the process has been running for a "very long" time, as the first term 

inside the bracket of equation (23) will disappear asymptotically.  

It is interesting to compare the conditions for Propositions 1, 2 and 3. All of them re-

quire the expected value of ,i tε  to be invariant with respect to past values 
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, , 1, .i t s i t sε ε− − − … , the levels or first differences of , , 1, ,i t s i t s− − −x x …  as well as to '
,1i iμ + x β  

and ,0iy . Propositions 1 and 2 also need ,i tε  to be uncorrelated with , 1i t−r , the regime 

indicator figuring in the current date adjustment equation, whereas for Proposition 3, 

invariance of ,i tε  with respect to lag s  and earlier of the regime indicator is sufficient. 

As an additional identifying assumption for the generalised differencing approach, we 

need the memory of ,i tr  to be finite with respect to ,i tε . This excludes, for example, an 

autoregressive equation for the threshold variable driving the regime indicator if the 

current shocks are correlated. The level estimator, for his part, needs the expected value 

of the individual effect iμ  to be unrelated to the rest of the process, including the initial 

deviation ( ),0i iy μ− . Both of these restrictions can be burdensome. But the two linear 

estimators based on Propositions 2 and 3 are able to fulfil special tasks. The generalised 

difference estimator will be unbiased even if some of the alpha coefficients are large – 

in fact it still works if one of them is exactly equal to 1. The level estimator, on the other 

hand, will discern differential adjustment speeds also if the regime indicator is contem-

poraneous. In order to better understand the comparative advantages, the next section 

shows simulation results. 

5.  Implementing and simulating the estimators  

5.1 Setting up the simulation 
In the simulation study, the three sets of moment conditions are used separately for es-

timation. For the regime indicator, I specify a threshold process. The k'th element of ,i tr  

is given by 

  ( ), 1 ,( ) Indi t k i t kk c s c−= ≤ ≤r . 

The numbers 0 , , Lc c…  are thresholds, with the first and the last element being equal to 

−∞  and ∞ , respectively. As an example for a threshold process with infinite memory 

with respect to the error term we use an AR(1): 

 , 1 ,i t t i ts k s υ−= + , 
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where the current shock ,i tυ  is contemporaneously correlated with the error term ,i tε . 

Alternatively, as an example of a process with finite memory, it is assumed that the 

threshold process be driven by an MA(q):  

  , ,
0

q

i t j i t j
j

s a b η −
=

= +∑ , with 0 1b = . 

The elements of the moving average conform to:  

  ,E 0,i tη =  , ,E 0 0,i t i t k kη η − = ∀ >  , ,E 0,i t i tη ε ≠  , ,E 0 0i t i t k kη ε − = ∀ > . 

Concretely, the two interrelated processes { }, ,,i t i tyr  are simulated as follows:  

Regime-dependent error correction process: ,i tε  is standard normal, iμ  follows an 

( )1,1N  process, ,i tε  and iμ  are independent. As a benchmark I use 0 0.3α =  and 

1 0.8α = . Note that the larger of these coefficients is not far from 1.  

Regime indicator process: If the threshold process is driven by an AR(1), I set 
2

, , ,E 1, E 0.8i t i t i tυ υ ε= = , ,i tυ  being calculated as a weighted sum of ,i tε  and an in-

dependent Gaussian process. The AR-parameter k  is 0.8 . Likewise, for the MA(q), the 

stochastic structure is chosen as 2
, , ,E 1, E 0.8i t i t i tη η ε= = , with ,i tη  being calculated as a 

weighted sum of ,i tε  and an independent Gaussian process. The threshold level is set 

equal to zero, resulting in an equal number of observations in each regime on average. I 

experiment with a MA(0) (uncorrelated regimes states) and a MA(1) with 1 0.8b = . 

Note the high contemporaneous correlation between the shocks in the regime equation 

and the error term.  

Panel structure: The panel is unbalanced, with individuals carrying either 8, 9 or 10 

observations, 1,000 of each type, that is 3,000 in total. For each individual, the process 

is simulated for 50 periods, and only the last 8, 9 or 10 observations are used for esti-

mation.  

All estimators are implemented by first calculating the transformed observations and the 

instruments and then adapting and using the routines supplied with the DPD module for 
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Ox written by Doornik, Arellano and Bond to perform GMM estimates and tests.4 De-

tails on the estimation routines follow. 

a) Quasi-Difference estimations 

I assume an AR(1) as a process driving the threshold variable that constitutes the re-

gime. The estimation equations are transformed in the way described above. The first 

version of the quasi-differencing approach, QD1, is implemented by estimating the 

transformed equation using a standard linear GMM estimator and then calculating the 

structural parameters by inverting equation (13). The more complicated QD2 estimation 

is performed by treating the moment as a non-linear function of the structural parame-

ters, as in equation (25). Both CMD estimations on the basis of the linear reduced form 

and direct non-linear GMM estimation of the structural parameters were used. The latter 

was implemented using the iterative Gauss-Newton method. The results are rather 

similar. For the conceptual reasons mentioned in the text, the nonlinear GMM proce-

dure is preferred, and only these results are shown. It has to be mentioned though that 

the CMD procedure is clearly faster than the iterative nonlinear GMM estimation pro-

cedure, without being less efficient. 

The procedure used for QD2 estimation is explained in some detail in Appendix 2. The 

Gauss-Newton method iterates on a linearised moment function calculated for prelimi-

nary estimates, sequentially improving the estimation. Calculating pseudo-observations 

for each step, the estimation problem can be solved using routines for the estimation of 

linear econometric models. As initial values, I use parameter estimates on the basis of 

the QD1 transformation. CMD estimates on the basis of the same moment condition 

could also be used. Indeed, they yield better initial values, but were not chosen here 

because of the conceptual problems with the asymptotics. As instruments, I use levels 

lagged twice. It turns out that the instruments are more informative (the estimates being 

more precise) if they are separated out in regimes. That is: For purposes of instrumenta-

tion, the lags of , 2i ty −  are interacted with regime dummies, , 2i t−r .  

                                                 
4  Ox is an object-oriented matrix programming language. For a complete description of Ox see Doornik 

(2001). 
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b) Forward Differences and Generalised Difference estimation 

When implementing the difference estimator, we can use the moment conditions in a 

specific way that greatly facilitates the calculation of moments. Proposition 1 requires 

us to calculate the λ 'th difference of every observation, with 2qλ ≥ +  and differences 

being taken using only observations in the same regime. Then we may use levels lagged 

1, 2,...λ λ+ +  as instruments. It seems that this requires us to make the set of instru-

ments for a specific observation dependent on whether or not there are two observations 

in the same regime within a specific time distance. By taking the earlier of the two ob-

servations as a point of reference ,i ty  and assigning to it the nearest lead ty λ+  of the 

same regime with 2 qλ ≥ + , the definition of suitable instruments is straightforward. 

We can uniformly use lags , 1i ty − , , 2i ty −  and earlier as instruments. 

I have experimented with two variants of the differencing approach. The "Forward Dif-

ference Estimator" uses a fixed lead of 2s q= + . This transformation preserves the 

correlation structure. However, it also leads to a heavy loss of observations, as only ob-

servations fulfilling , 1 , 1i t i t λ− + −=r r  can be transformed. The "Generalised Difference Esti-

mator" uses the fact that the moment condition for differenced observation presented in 

Proposition 1 holds for all leads 2s q≥ + . The transformation thus is carried out using 

the nearest lead 2s q≥ +  with , 1 , 1i t i t s− + −=r r . Due to the larger number of valid observa-

tions, this results in much more precise estimations. Only the results for this estimator 

are shown. As in Quasi-Difference estimation, I interacted the lagged levels , 1i ty −  with 

regime indicators , 1i t−r . In order to test the validity of the transformation, regime dum-

mies are included as additional RHS variables. They also enter the instrument set. 

c) Level estimation 

As described above, the level estimator is implemented by specifying an artificial equa-

tion that contains the vector , 1i t−r  as an additional RHS variable. Instruments are the 

levels of , , 1i t i ty −r  (i.e. two interaction terms) and current regime dummies in those col-

umns where the regime variable is predetermined, and , 1 , 1i t i ty− −r  plus lagged regime 

dummies where the regime variable is contemporaneous.  
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5.2 Simulation results 
Tables 1 and 2 show estimates on the basis of quasi-difference transformations (1,000 

runs). The theoretical discussion has shown that the finite sample properties of the esti-

mators may depend on the size of the regime specific coefficients, notably on their dif-

ference from 1. Therefore estimations for a whole range of parameters are shown. The 

true value for 1α  is set as 0.3 , whereas the value for 2α  ranges from 0.3  to 0.9 . Larger 

ranges and finer steps are plotted in Figures 1 and 2.  

For the construction of Table 1 and Figure 1, the simpler QD1 transformation was used. 

Whereas for smaller coefficient values the estimator performs well and yields correct 

estimates with a good precision, it is less reliable if one of the regime specific coeffi-

cients is large. For 1 2 0.3α α= = , the mean bias is only of the order of -0.0004 for both 

parameters. It will be 0.0177 for 2α̂  when 2α  is raised to 0.7 , and for 2 0.9α =  the fi-

nite sample bias of 2α̂  becomes a non-negligible -0.0415. The estimates 1α̂  also 

deteriorate, although less markedly. The table also gives t-values and Sargan statistics. 

The bias leads the t-tests for the true value of individual coefficients reject too often 

when one of the coefficients is too high: In the extreme case of 2 0.9α = , the true value 

is rejected 77.9% of the times. The same is true for the Sargan test of instrument valid-

ity: with large regime specific coefficients, it rejects the instruments too often. We can 

conclude that slow speeds of adjustment (high persistence) create a problem for QD1 

estimation.  

Table 2 and Figure 2 give results for the QD2 transformation, moment condition 2. As 

was expected, the estimator performs better for large values of regime specific coeffi-

cients than its counterpart based on QD1. In the extreme case of 1 0.3α =  and 2 0.9α = , 

the bias is 0.015 and 0.017. In terms of absolute value, this is about half of what resulted 

from QD1. For smaller values of regime specific coefficients, there is hardly any bias at 

all. Sargan statistics and t-values remain reliable but for very high values of 2α .  
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Figure 1: Mean bias for estimates on the basis of QD1,  
with 1 0.3α =  and 2α  varying 
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Figure 2: Mean bias for estimates on the basis of QD2,  
with 1 0.3α =  and 2α  varying 
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Figure 3: Mean bias for estimates on the basis of QD1, with  
1 0.8α =  and 2α  varying 
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Figure 4: Mean bias for estimates on the basis of QD2,  
with 1 0.8α =  and 2α  varying 
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The theoretical discussion showed that the precision of the QD2 estimator should de-

pend on the difference between the regime specific coefficients. If both of them are 

high, but of similar size, the ratio ( ) ( ), 2 , 11 1i t i tα α− −− −  in the definition of the trans-

formed error term ,i tξ  cancels out, see eq. (12). The error term in QD1, in contrast, de-

pends on the absolute distance of the regime specific coefficients from 1. To study this 

issue, the simulations of QD1 and QD2 estimation are performed using a value of 

1 0.8α =  as a platform and varying over 2α . The result is shown in Figures 3 (QD1 esti-

mation) and 4 (QD2 estimation) Here, the QD1 estimates are biased throughout the 

range. The bias of 2α̂  switches from positive to negative, whereas the bias of 2α̂  is 

negative throughout. In contrast, with QD1 the bias practically disappears when both 

parameters are large, to be noticeable only when 1α  is small. 

Table 3 and Figures 5 and 6 give the results using GMM on observations transformed 

by Generalised Differences. In Columns 1 and 2 the estimator is correctly used. The 

memory of the regime process is restricted – Column (1) assumes uncorrelated regimes, 

and Column (2) assumes a threshold process driven by an MA(1). The minimum leads 

used in transformation are 2 and 3, respectively. In both cases, the Generalised differ-

ence estimator performs well. The estimates are unbiased. The standard deviations are 

similar to what can be obtained from the quasi-difference estimates for the smaller of 

the two coefficients and actually somewhat lower for the higher coefficient. In the case 

of an MA(1) regime process, standard deviations are higher, as less observations can be 

used. Column (1), with a minimum lead of 2, yields an average of 15.058 valid obser-

vations per estimation. This number decreases to 11.277 in Column (2), when a mini-

mum lead of 3 is imposed. On the same set of simulated data, the estimates based on 

quasi-differencing can use 21.000 observations each run. Figure 5 shows that the bias of 

the Generalised Difference estimator is very small when the conditions for its use are 

met and does not depend systematically on the size of the adjustment coefficients. Even 

regime specific coefficients equal to or larger than 1 can be accommodated, as long as 

the overall process remains stable. Columns (3) and (4) do "the wrong thing". For Col-

umn (3), a minimum lead of 2 is used on data generated with a regime process gener-

ated by an MA(1), where a lead of 3λ ≥  would be warranted. Column (4) assumes an 

AR(1) process driving the threshold variable: this process has infinite memory. Unex-
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pectedly, in both cases the estimator turns out to be biased. However, in spite of a strong 

correlation between the shock in the regime variable and the error term, the bias is mod-

erate. In Column (3), only the estimates 2α̂  are biased, to a degree that is similar to the 

performance of the QD2 estimator under the same (unfavourable) parameter values. 

When, as assumed in Column (4), the regime process is driven by a process with infinite 

memory, the resulting bias is larger, similar in size to the weak performance of the QD1 

estimator when one of the coefficients is large. Figure 6 shows how in this latter case 

the bias depends on the alpha-parameters. 

The specification tests do not fail to detect the erroneous use of the estimator. In both 

cases, the regime constant test rejects the specification in 100% of the cases. As the es-

timated coefficients are of opposite sign, they cannot be caused by trending target val-

ues. The regime dummies have "captured" the regime-specific non-zero expectations of 

the differenced residuals ( ), , 2 , 1 , 3E i t i t i t i tε ε − − −− =r r  for the two values that , 1i t−r  can take. 

The Sargan test is sensitive for the misspecification in Column (3) where the wrong lead 

is used, rejecting 91.9% of the estimates. Detecting an infinite memory of the regime 

variable is harder for the Sargan-test: only 23.2% of estimates in Column (4) are re-

jected.  

Table 4, together with Figures 7 and 8, show simulation results for the level estimator, 

both for the case of a predetermined regime and a contemporaneous regime. In both 

cases, a regime process with infinite memory is assumed. The table and the figures vary 

2α  for a fixed value of 1 0.3α = . In the predetermined case, there is little bias for the 

whole range of parameters, with the possible exception of the 2 1α = , where the value of 

the bias of 1α̂  assumes a moderate 0.01 . Standard deviations are similar to what was 

obtained with the other estimators. If 2α  assumes a value larger than 1, the estimates 

become extremely exact. 
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Figure 5: Mean bias for Generalised Differences estimates, with 1 0.8α =   
and 2α  varying. Here: regime process uncorrelated over time, correct lead of 2 
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Figure 6: Mean bias for Generalised Differences estimates, with 1 0.8α =  and 2α  
varying. Here: regime process unlimited memory AR(1), misspecified lead of 2 
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Figure 7: Level estimation with predetermined regimes. Mean bias for estimates 
on the basis of moment condition 4, with 1 0.3α =  and 2α  varying 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Level estimation: bias as a function of alpha2

bias alpha1 × alpha2 bias alpha2 × alpha2 

 
 
 

Figure 8: Level estimation with contemporaneous regimes. Mean bias for estimates 
on the basis of moment condition 4, with 1 0.3α =  and 2α  varying 
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Columns (3) and (4), as well as Figure 8 show that the level estimator indeed success-

fully copes with contemporaneous regime variables, a problem that cannot be solved by 

any of the other approaches. There is a moderate bias that peaks 0.012 for 2α̂  when 

2 0.9α = , and the standard deviations are higher than with a predetermined regime for 

2 1α < . Again, for 2 1α >  the level estimates become very exact. In all columns, the 

regime dummy that is artificially introduced into the equation is very near the theoreti-

cal value of ( ), 1E 1 e
i tα μ−− , a term that is introduced into equation (24) by splitting up 

the firm fixed effect into its expectation and a deviation uncorrelated with the shocks in 

the other processes. 

5.3 Comparing the estimators 
I have presented four different ways of estimating an adjustment equation with time-

varying persistence, all within a GMM framework, albeit with a different set of moment 

conditions.  

Two estimation techniques rely on transforming the original equation using quasi-dif-

ferences. Both quasi-differences estimators are very precise when all coefficients are 

small. When both coefficients are large and of similar size (high persistence throughout 

the regimes), the results of QD1 estimation have been shown to be unusable in simula-

tion, whereas the QD2 approach continues to deliver correct results. In Chapter 4, the 

QD2 estimator is successfully employed for estimating differential adjustment speeds 

for the capital stock. The most difficult parameterisation is when coefficients are widely 

different, while one of them is large. While not unaffected by small sample problems, 

the QD2 estimator performs clearly better in this situation. In direct comparison, the 

major virtue of the QD1 estimator lies in its surprising simplicity, while still being 

consistent in a wider range of circumstances.  

The third method involves transformation using Forward Differences or Generalised 

Differences, with a lead that is long enough to overcome the memory in the process 

driving the regime indicator for the ,i tε -shocks. This method is applicable only when 

the memory of the regime process is limited. I have shown how to test this requirement. 

Although a limited memory may be a good approximation in a number of circum-

stances, such as investment under financing constraints, the requirement will not always 
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be fulfilled. This method leads to a linear estimator which remains unbiased even if 

some of the coefficients are in the neighbourhood of 1 or even larger. The forth method 

leaves the equation untransformed, and past differences are used as instruments. Regime 

dummies are employed to capture and neutralise the time-varying non-zero expected 

value of the residual process. The memory of the regime process is irrelevant for this 

technique. However, we have to assume the individual-specific deterministic equilib-

rium to be independent of the shock parameters of the other relevant processes. The 

level estimator is very precise with regard to larger coefficients. This is not really sur-

prising: the use of level equations has originally been proposed to overcome the prob-

lem of weak instruments in cases where the autoregressive parameter approaches 1. 

More important is another virtue of the forth method: the level estimator is the sole pro-

cedure that can be used when the regime indicator is contemporaneous to the error term 

in the adjustment equation.  

To sum up, the two quasi-differencing methods should be regarded as the standard pro-

cedure, with the QD1 method apt for quick specification search and the QD2 transfor-

mation leading to efficient results in small samples. QD1 must not be used if one or 

more of the regime specific autoregressive coefficients are large. A preliminary estima-

tion constraining the coefficients to be equal across regimes may provide a helpful 

warning – it can be done using the standard methodology devised by Arellano/Bond, 

Blundell/Bond and Arellano/Bover. The two linear techniques are of great value in 

cases where the quasi-differencing techniques do not work properly: near unit roots in at 

least some regimes and – concerning the level estimator – contemporaneous regimes. 
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Table 1: Quasi-differences, QD1 transformation,1000 runs 

Simulation # (1) (2) (3) (4) 

Specification state variable 
underlying regimes AR(1) 

True 1α  0.3 0.3 0.3 0.3 

True 2α  0.3 0.5 0.7 0.9 

     

1α  Mean parameter estimate 0.2930 0.2955 0.2939 0.2687 

 Mean bias -0.0041 -0.0045 -0.0061 -0.0313 

 Mean estimated  
std. deviation 0.0220 0.0236 0.0276 0.0351 

 Std. dev. parameter estimate 0.0218 0.0247 0.0298 0.0533 

 RMSE 0.0222 0.0251 0.0304 0.0618 

 Freq. rejections of true value 
on 5% conf. level  4.6% 6.8% 5.9% 25.7% 

      

2α  Mean parameter estimate 0.2957 0.4938 0.6868 0.8586 

 Mean bias -0.0043 -0.0062 -0.0133 -0.0414 

 Mean estimated 
std. deviation 0.0194 0.0189 0.0177 0.0139 

 Std. dev. parameter estimate 0.0197 0.0190 0.0188 0.0203 

 RMSE 0.0202 0.0200 0.0230 0.0262 

 Freq. rejections of true value 
on 5% conf. level  6.0% 5.4% 12.3% 77.9% 

      

 Freq. rejection by Sargan-
Hansen on 5% conf. level 8.1% 9.4% 16.4% 81.6% 

 Valid obs. in estimation 21,000 21,000 21,000 21,000 

Notes: The table shows estimates of 1α  and 2α  on the basis of moment condition 1. Columns vary by 
parameters 1α  and 2α  used for generating the panels according to eq. (1). Each column represents 1000 
repetitions of two stage GMM estimates using an unbalanced panel of 3000 individuals with 10, 9 and 8 
observations (1000 individuals each). The number of valid observations is reduced by the need to trans-
form variables. Instruments are the levels of , 2 , 2i t i ty− −r  (i.e. two interaction terms) and a constant. Esti-
mated standard deviations are derived from reduced form estimates using the delta method. Estimation is 
executed using DPD package version 1.2 on Ox version 3.30 and additional, user written routines. 
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Table 2: Quasi-differences, QD2 transformation, 1000 runs 

Simulation # (1) (2) (3) (4) 

Specification state variable 
underlying regimes AR(1) 

  
True 1α  0.3 0.3 0.3 0.3 

True 2α  0.3 0.5 0.7 0.9 
 

1α  Mean parameter estimate 0.2998 0.3006 0.3021 0.3152 

 Mean bias -0.0002 0.0006 0.0021 0.0152 

 Mean estimated  
std. deviation 0.0221 0.0229 0.0261 0.0418 

 Std. dev. parameter estimate 0.0217 0.0235 0.0270 0.0463 

 RMSE 0.0217 0.0235 0.0271 0.0487 

 Freq. rejections of true value 
on 5% conf. level  4.7% 5.8% 5.8% 9.5% 

      

2α  Mean parameter estimate 0.2985 0.4982 0.6943 0.8790 

 Mean bias -0.0014 -0.0018 -0.0057 -0.0209 

 Mean estimated 
std. deviation 0.0195 0.0194 0.0187 0.0174 

 Std. dev. parameter estimate 0.0195 0.0192 0.0188 0.0170 

 RMSE 0.0196 0.0193 0.0197 0.0269 

 Freq. rejections of true value 
on 5% conf. level  5.9% 4.5% 5.9% 23.0% 

      
 Freq. rejection by Sargan-

Hansen on 5% conf. level 5.2% 6.0% 6.0% 22.9% 

 Valid obs. in estimation 21,000 21,000 21,000 21,000 

Notes: The table shows estimates of 1α  and 2α  on the basis of moment condition 2. Columns vary by 
parameters 1α  and 2α  used for generating the panels according to eq. (1). Each column represents 1000 
repetitions of a two stage GMM procedure iterating on pseudoregressors, using an unbalanced panel of 
3000 individuals with 10, 9 and 8 observations (1000 individuals each). As an initial value, an estimate on 
the basis of moment condition 1 was used, see the results in Table 2. The number of valid observations is 
reduced by the need to transform variables. Instruments are the levels of , 2 , 2i t i ty− −r  (i.e. two interaction 
terms) and a constant. Estimated standard deviations are calculated as a by-product from the final Gauss-
Newton iteration step. Estimation is executed using DPD package version 1.2 on Ox version 3.30 and 
additional, user written routines. 
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Table 3: Generalised Differences Estimation, ( ) ( )1 2, 0.3,0.8α α =  1,000 runs 

  ... using appropriate leads ... using inappropriate leads 
 Specification state variable 

underlying regimes 
(1) 

MA(0) 
(2) 

MA(1) 
(3) 

MA(1) 
(4) 

AR(1) 
  lead = 2 lead = 3 lead = 2 lead = 2 

1α  Mean estimate 
(true value 0.3) 

0.2990 0.2994 0.2950 0.2767 

 Mean est. std. dev. 0.0215 0.0286 0.0243 0.0223 
 Mean bias -0.0010 -0.0006 -0.0050 -0.0232 
 RMSE 0.0118 0.0276 0.0239 0.0322 
 Freq. rejections of true value  

on 5% conf. level  
6.4% 3.8% 5.1% 18.0% 

      
2α  Mean estimate 

(true value 0.8) 
0.7978 0.7995 0.7736 0.7568 

 Mean est. std. dev. 0.0261 0.0304 0.0298 0.0276 
 Mean bias -0.0021 -0.0005 -0.0264 -0.0432 
 RMSE 0.0113 0.0296 0.0399 0.0518 
 Freq. rejections of true value 

on 5% conf. level 
3.7% 4.5% 14.2% 34.6% 

      
Specification tests     

1G  Mean estimate -0.0001 0.0000 -0.0765 -0.0977 

 Mean est. std. dev. 0.0116 0.0145 0.0114 0.0102 
 Freq. rejections of zero value on 

5% conf. level 
5.8% 5.4% 100% 100% 

      
2G  Mean estimate -0.0007 -0.0010 0.0822 0.0977 

 Mean est. std. dev. 0.0114 0.0141 0.0114 0.0102 
 Freq. rejection of zero value on 

5% conf. level 
4.9% 4.7% 100% 100% 

      
 Freq. rejection by Sargan-Hansen 

on 5% conf. level 
5.1% 4.8% 91.9% 23.2% 

 Av. no. of valid observations 15.058 11.277 14.107 15.117 

Note: The table shows estimates of 1α  and 2α  on the basis of moment condition 3 (Generalised Difference 
Estimator). Columns vary by the stochastic specification of the regime indicator and by the lead used for 
transformation. Columns (1), (2), and (3) specify processes where the memory of the regime variable is 
limited over time and the state variable that underlies the regime indicator follows an MA process. In 
column (4), the regime process is supposed to have infinite memory. In all columns, 1 0.3α =  and 

2 0.8α = . Each column represents 1000 repetitions of two stage GMM estimates using an unbalanced panel 
of 3000 individuals with 10, 9 and 8 observations (1000 individuals each). The number of valid observa-
tions is reduced by the need to transform variables. Instruments are the levels of , 1 , 1i t i ty− −r  (i.e. two interac-
tion terms) and a constant. Estimation is executed using DPD package version 1.2 on Ox version 3.30 and 
additional, user written routines. 



 150 

 

Table 4: Level Estimation 1000 runs 

Simulation # (1) (2) (3) (4) 
Regime indicator Predetermined  Contemporaneous 
State variable underlying regimes AR(1) 
  
True 1α  0.3 0.3 0.3 0.3 
True 2α  0.8 1.1 0.8 1.1 

   

1α  Mean parameter estimate 0.3031 0.3004 0.3006 0.2951 

 Mean bias 0.0031 0.0004 0.0006 -0.0049 
 Mean estimated std. deviation 0.0197 0.0074 0.0255 0.0073 
 Std. dev. parameter estimate 0.0187 0.0078 0.0252 0.0079 
 RMSE 0.0190 0.0078 0.0252 0.0094 
 Freq. rejections of true value on 5% 

conf. level  4.3% 4.2% 4.7% 10.5% 
      

2α  Mean parameter estimate 0.7987 1.1001 0.7891 1.1004 

 Mean bias -0.0013 0.0001 -0.0109 0.0004 
 Mean estimated std. deviation 0.0188 0.0013 0.0283 0.0017 
 Std. dev. parameter estimate 0.0191 0.0013 0.0285 0.0017 
 RMSE 0.0192 0.0013 0.0305 0.0017 
 Freq. rejections of true value on 5% 

conf. level  5.7% 5.2% 7.0% 5.6% 
     

Auxiliary regime constants     

1G  Mean estimate 0.6985 0.698 0.6795 0.6922 

 Theoretically expected 0.7 0.7 0.7 0.7 

2G  Mean estimate  0.2030 -0.0984 0.2434 -0.0852 

 Theoretically expected 0.2 -0.1 0.2 -0.1 
      
 Freq. rejection by Sargan-Hansen on 

5% conf. level 
4.1% 3.0% 5.2% 4.9% 

      
 Valid obs. in estimation 24,000 24,000 24,000 24,000 

Note: The table shows estimates of 1α  and 2α  on the basis of moment condition 4 (Level Estimator). 
Columns vary by parameters 1α  and 2α  used for generating the panels according to eq. (1) and by the 
stochastic specification of the regime indicator. In all cases, the regime process is supposed to have infinite 
memory, following an AR(1) process. Columns (1) and (2) relate to processes where the regime variable is 
predetermined in the adjustment equation, and Columns (3) and (4) results for regime variable that are 
contemporaneously correlated with the error term. In all columns, 1 0.3α = . Whereas columns (1) and (3) 
specify 2 0.8α = , columns (2) and (4) show results for 2 1.1α = . Each column represents 1000 repetitions 
of two stage GMM estimates using an unbalanced panel of 3000 individuals with 10, 9 and 8 observations 
(1000 individuals each). Instruments are the levels of , , 1i t i ty −r  (i.e. two interaction terms) and current 
regime dummies in those columns where the regime variable is predetermined, and , 1 , 1i t i ty− −r  plus lagged 
regime dummies where the regime variable is contemporaneous. Estimation is executed using DPD pack-
age version 1.2 on Ox version 3.30 and additional, user written routines.  
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Appendix A: A state dependent error correction model 

Formally, the state dependent adjustment equation considered in this paper involves a 
lagged dependent variable and a forcing term ,i tx . But also higher order adjustment 

processes can be accommodated, by redefining states appropriately.  

Consider a linear autoregressive process with distributed lags in a forcing term ,i tx  and 
an individual specific constant iμ : 

  ( ) ( ), , ,i t i t i i tA L y B L μ ε= + +x , 

where ( )A L  and ( )B L  are lag polynomials. As is well known, the process can always 

be written in the error correction format. If, for example, ( )A L  and ( )B L  are of order 

2, this leads to  

  
( )*

, , 1 , 1

1
, , 1 , 1 ,

'

' ' .
i t i t i t i

i t i t i t i t

y y

y

φ μ

ω ε
− −

− −

Δ = − − −

+ Δ + Δ + Δ +0

β x

γ x γ x
 

In the first line, the term in brackets is the deviation from static equilibrium, where β  
may be interpreted as a cumulative long run effect of a shock in ,i tx . The transformed 

constant *
iμ  is equal to ( ) 1

iA L μ−
⎡ ⎤⎣ ⎦ . The term φ  is the speed of adjustment. If the proc-

ess is stable, then 1φ < . The second line depicts the transitional dynamics, which is not 

directly related to the deviation from equilibrium. With ( )A L  or ( )B L  of higher order 

than 2, the transitional dynamics in the error correction format would involve higher 
order lags of differences ,i tΔx  and ,i tyΔ .  

A straightforward generalisation of the adjustment process considered hitherto makes 
φ , 0γ , 1γ , and 1ω  state dependent, while leaving the transformed constant *

iμ  and the 
long run effect β  time invariant. The latter imposes a constraint on the time varying 

coefficients. For simplicity, I consider all adjustment coefficients as predetermined: 

 ( )*
, , 1 , 1 , 1 , 1 , , 1 , 1 , 1 , 1 ,' ' 'i t i t i t i t i i t i t i t i t i t i t i ty y yφ μ ω ε− − − − − − − −Δ = − − − + Δ + Δ + Δ +0 1β x γ x γ x .(A1) 

Now let again ,i tr  be an indicator variable for the state of adjustment. As the adjustment 

process is parameterised over two lags, it is straightforward to model the time varying 
parameters as a function involving the state variables in two periods, 1t −  and 2t − . 
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Finally, let , 1i t−d  be an indicator vector of dummies for all the possible values 

( ), 1 , 2,i t i t− −r r  can take. Then we can write: 

  , 1 , 1'i t i tφ − −= φ d , , 1 , 1'i t i tω − −=ω d , , 1 , 1i t i t− −=0 0γ Γ d , 1
, 1 , 1i t i t− −= 1γ Γ d , 

with φ , ω , 0Γ  and 1Γ  vectors and matrices of state dependent adjustment coefficients 

to be estimated. Written this way, the problem is fully equivalent to the one I have 
treated in this paper, with , 1i t−d  taking the place of , 1i t−r  with respect to the adjustment 
speed, , 1i tφ − , and using appropriate interaction terms for all the other state dependent 

coefficients. With the help of quasi-differencing or generalised differencing, we can 
eliminate the fixed effect from equation (A1). With contemporaneous adjustment coef-
ficients, we may use the level estimator. It has to be noted though that – compared to a 
first order adjustment process – the generalised difference estimator will be difficult to 
use, as there are 2L  states to be considered here, and only pairs of observations belong-
ing to the same regime with a given minimum time distance can be used. The other two 
estimation principles are not affected by this profusion of states, except for the fact that 
the number of coefficients is higher. 
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Appendix B: Nonlinear GMM estimation using the Gauss-Newton 
Method 

The Gauss-Newton method has been developed for Nonlinear Least Squares problems. 
Its use in GMM estimation is much less frequent and shall therefore be exposed. See 
Davidson and McKinnon (1993) on the use of Gauss-Newton in Nonlinear Least 
Squares and Instrumental Variables Estimation, Hayashi (2000) on GMM estimation, 
and Judge et al. (1985) on numerical methods in maximisation.  

A GMM estimator θ̂  maximises an objective function ( )nQ θ , given as 

  ( ) ( )
( ) ( )

( )
( )1 1

1 ˆ'
2n n nK KK K

Q
×× ×

= −θ g θ W g θ . 

The function ( )ng θ  represents an empirical moment, calculated for some P-dimen-

sional parameter vector θ . Ŵ  is a possibly data-dependent matrix weighting the K mo-
ments. I will assume the specific case of a generalised nonlinear instrumental variables 
estimation problem5 where the moment function ( )ng θ  can be written as a product of 

the vector of instruments and an error term: 

  ( )
( )

( )( )
1

1 ,
n

n i i i
K i

y f
n×

= −∑g θ z x θ . 

Here, iy  is a scalar, ix  is a vector of Q explanatory variables and iz  is a vector of 

instruments. The double indexation is dropped, and i characterises an observation, not 
an individual. The first order condition for maximising the objective function is 

  ( )
( )

( )
( )

( ) ( )
( )11

ˆ ˆ ˆˆ'n n nK K
P K KP

Q
×

× ××

∂ = − =
∂

θ G θ W g θ 0
θ

, 

where 

  ( )
( )

( )
( )

( )
( )

1
1

1ˆ ˆ ˆ,
' '

n

n n i i
KiP K P

f
n ×× ×

⎛ ⎞∂ ∂⎜ ⎟= = − ⋅
⎜ ⎟∂ ∂
⎝ ⎠

∑G θ g θ z x θ
θ θ

. 

                                                 
5  This is the most important case and the only one of relevance here. Actually, with the exception of the 

pseudo-data iteration technique, the following does not depend on this specific structure of the moment 
function. 
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is the Jacobian matrix of ( )ng θ , the derivative of the vector of moments with respect to 

the parameters. If the equation is nonlinear in variables only, as in the case of the quasi-
differencing approach, we have: 

  ( )
( )

( )
( )1

, 'i i
Q Q K

f
× ×

=x θ x h θ ,  

with ( )⋅h  a vector-valued function, and thus: 

  ( )
( )

( )( )
1

1 '
n

n i i i i
K i

y
n×

= −∑g θ z z x h θ  

and  ( )
( )

( )
( ) ( )

( )
( )

1 1

1ˆ ˆ ˆ'
' '

n

n n i i
K QiP K Q P

n × ×× ×

⎛ ⎞∂ ∂⎜ ⎟= = − ⋅
⎜ ⎟∂ ∂
⎝ ⎠

∑G θ g θ z x h θ
θ θ

. 

A Gauss-Newton estimation step minimises the objective function ( )nQ θ  with the func-

tion ( )ng θ  replaced by a linearised version. This is the core of the iterative optimisation 

procedure, but the Gauss-Newton estimation is also useful for generating test statistics. 
The first order Taylor-expansion of ( )ng θ  around some preliminary estimator ˆ

jθ  is 

  
( ) ( ) ( )

( )
( )

( )
( ) ( )( ) ( )

( )
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ .

n n j n j j n j n j j n j
K P P

n j

× ×

≅ + − = − +

=

g θ g θ G θ θ θ g θ G θ θ G θ θ

g θ θ�
 

The gradient of this linearised moment function with expansion point ˆ
jθ  is a matrix 

constant: 

  ( ) ( ) ( )ˆ ˆ ˆ
'n j n j n j

∂= =
∂

G θ θ g θ θ G θ
θ

� � .  

Replacing ( )ng θ  in the original objective function by ( )ˆ
n jg θ θ�  renders a quadratic 

function. The first order conditions imply a linear GMM estimator:  

  ( ) ( ) ( ) ( ) ( )( ) ( )* * *ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ' 'n n j n j n j n j j n j
⎡ ⎤= − + =⎢ ⎥⎣ ⎦

G θ θ W g θ θ G θ W g θ G θ θ G θ θ 0� �  

  ( ) ( ) ( ) ( ) ( )( )1
* ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ' 'n n n n j n j j

−
⎡ ⎤= +⎣ ⎦θ G θ WG θ G θ W g θ G θ θ . 
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Here, *θ  denotes the solution of the modified problem. All elements on the right hand 
side of this equation are evaluated at the expansion point ˆ

jθ . Gauss-Newton optimisa-

tion iterates on a sequence of these linearised estimation problems, with the updating 
equation: 

  ( )*
1

ˆ ˆ ˆ
j j js+ = + −θ θ θ θ . 

The step length s may be chosen less than 1 in order to ensure convergence in cases 
where the objective function is flat in the neighbourhood of the solution.  

To perform the Gauss-Newton iteration, we may define pseudo-observations: 

  ( )*
,
ˆ

'i i jf∂=
∂

x x θ
θ

, and  

  ( ) ( ) ( )* *
, , ,
ˆ ˆ ˆ ˆ ˆ

'i i i j i j j i i j i jy y f f y f∂= − + = − +
∂

x θ x θ θ x θ x θ
θ

 

to obtain:  

  ( ) ( )* *1ˆ
n

n j i i i
i

y
n

= −∑g θ θ z x θ�  

and   ( ) *1ˆ
n

n j i i
in

= − ∑G θ θ z x� . 

This is the format of linear GMM estimation. The first order conditions lead to 

  ( ) ( ) ( ) ( )1* * * * *ˆ ˆ'i i i i i i i iy
−

⎡ ⎤= ⎣ ⎦∑ ∑ ∑ ∑θ z x W z x z x W z , 

which is the standard linear GMM estimator when applied to the pseudo-observations. 
This is identical to the procedure in nonlinear least squares estimation.  

The solution of the non-linear estimation problem, θ̂ , is a fixed point in the Gauss-
Newton iterations. Evaluated at the expansion point, i.e. with ˆ

j=θ θ , the moment func-

tion ( )ng θ  and its gradient ( )nG θ  are equal to their respective linearised counterparts 

( )ˆ
n jg θ θ�  and ( )ˆ

n jG θ θ� . Therefore, given that θ̂  satisfies the first order condition for 

the nonlinear problem, it will also fulfil the first order conditions for the corresponding 
linearised problem, if θ̂  is chosen at the expansion point. The residuals of the Gauss-
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Newton estimates are identical to the residuals of the original nonlinear problem at the 
point of convergence. For ˆ ˆ

j =θ θ , the Gauss-Newton residuals are 

  ( ) ( ) ( ) ( )* *
, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
' 'i i i i i i i iy y f f f y f∂ ∂− = − + − = −

∂ ∂
x θ x θ x θ θ x θ θ x θ

θ θ
. 

Similarly, the covariance matrix of θ̂  can be computed as the covariance matrix of the 
Gauss-Newton estimation at the point of convergence. This follows directly from com-
paring the asymptotic covariance of nonlinear GMM estimation with its linearised 
counterparts. In fact, the asymptotic covariance is computed using the very same lin-
earisation of ( )ng θ  that also defines the Gauss-Newton regression above, see Hayashi 

(2000), Section 7.3. 

The Gauss-Newton procedure is a gradient method. We can write:  

  ( ) ( ) ( ) ( )1
* ˆ ˆ ˆ ˆ ˆˆ ˆ' 'j n n n n j

−
⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦θ θ G θ WG θ G θ Wg θ . 

The second expression in brackets is the gradient of the objective function ( )nQ θ , 

evaluated at ˆ
jθ . It is multiplied by the inverse of a quadratic form in the gradient of the 

moment function. This latter expression takes the role of the negative inverted Hessian 
in the Newton-Raphson algorithm. This matrix will be positive definite in the 
neighbourhood of 0θ , provided that ( )( )0E nG θ  has full column rank and the number 

of observations is large. Thus, if s is chosen small enough, the value of the objective 
function will increase each iteration. 


